Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読んだ「Class Imbalance, Redux」
Search
Shinichi Takayanagi
June 14, 2018
Science
4
3.4k
論文読んだ「Class Imbalance, Redux」
Shinichi Takayanagi
June 14, 2018
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
510
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
600
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.1k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
330
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.3k
論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments」
stakaya
1
4.7k
Other Decks in Science
See All in Science
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
200
統計学入門講座 第1回スライド
techmathproject
0
330
MCMCのR-hatは分散分析である
moricup
0
240
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
380
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
920
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
230
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
830
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
510
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
470
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
480
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.5k
CV_5_3dVision
hachama
0
140
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
A better future with KSS
kneath
239
17k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Become a Pro
speakerdeck
PRO
28
5.4k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Rails Girls Zürich Keynote
gr2m
94
14k
Practical Orchestrator
shlominoach
188
11k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Transcript
Class Imbalance, Redux Byron C. Wallace, Kevin Small, Carla E.
Brodley, Thomas A. Trikalinos (ICDM 2011) 高柳慎一 @_stakaya 論文読んだ
本日のお持ち帰り • 不均衡クラス分類問題の理論が未確立(当時) • なので、確率論的な視点から問題を定式化 • “undersampling + bagging”が良い?という結論 –※undersampling
= balanced bootstrapで複数個レプリカ データ・セット生成 –論文中の表現:In almost all imbalanced scenarios, practitioners should bag classifiers induced over balanced bootstrap samples 2
準備 • 手元にある訓練データ – : から生成される”+”データ(Minority) – : から生成される”ー”データ(Majority) –“+”Classに属するデータ
が、”ー”Classに属する データ に比べ少ない • 2値クラス分類を考える 3
単純に分類した場合のBias 4 • 真の境界: • 推定された境界: • 直感的に左寄りになる • 部分特徴量空間:
• ※論文図1より
目的(損失)関数 • False Positive/Negativeの際の罰則: • Minority Class (“+”)の割合: • False
Positive/Negativeに対して罰を与える • 適当な”距離”じゃなくて、(経験分布として見 ると)個数になるのが理論のミソ何だと思う 5
目的(損失)関数 • False Positive/Negativeの際の罰則: • Minority Class (“+”)の割合: • その経験(実データ)版(個数で罰則)
6
よくある不均衡制御 • False Positive/Negativeの際の罰則: • この罰則を制御して目的関数をいい感じに • 所謂、”重みをつける”操作で対応 • これはあまり効果なし、特にデータが分離可能
な場合明らかに全く効果がない –これは目的関数の形の仮定から自明 –(これが言いたいために距離を使ってないのか?) 7
よくある不均衡制御(なんで駄目?) 8 • 赤矢印間で罰則C やωを変えても、 経験損失関数の値 は不変 • 意味がない •
※図1再掲
SMOTEについて • 不均衡データの調整によく使われる奴 • アルゴリズム –MinorityクラスのK近傍データをいくつか持ってきて –そのうちの1つをランダムに選んで、内挿して点を増やす • こいつはアルゴリズムとして内挿なので、 Minorityに属する点が外に拡大されて出ていくこ
とはない → さっきの図でいう”境界をMajor側に 向かわせる方向”に最適化はどのみち進まない 9
どうやるといいのだろうか? • Undersamplingを使お う –Majorityを減らす • 図からわかるようにバ イアスは明らかに減る • ただしωの分散が出る
• 論文図2より 10
どうやるといいのだろうか? • ωの分散をおさえるためにBaggingを使う • Baggingにおいて普通はBootstrap –完全Random選択 • 先行研究でもBalanceするように取ってるし、 いいだろ!わっはっは! 11
シミュレーション • 特徴量xは全部バイ ナリ変数 • 右側の箱は無意味 Featureの割合と データのSparse制御 • πyが不均衡比率
• 論文図3より 12
結果の図(論文図4) • F値 v.s. 次元 • 左から右にπy=5%, 10%, 20% •
次元があがるとデータが分割可になるので罰則付き 系の手法がパフォーマンス悪化 13
結果の図(論文図5) • F値 v.s. データサイズ • 左から右にπy=5%, 10%, 20% •
サンプルサイズが増えると、(境界を動かせるサン プルも増えるので)罰則付き系手法も精度良 14
結果の図(論文図6) 15 • 左・右:分離可・不可 なデータセットに対す るBase(SVM)から のF値向上具合 • 分離可なデータの場合 にはbaggingしか精度
向上ない
結果の図(論文図7) • 実データでも やった • Bagging強し • (あまり深く読 んでない…) 16