Clark (PhD T., 2015) Kepler’s supernova; T hot (left) and T cold (right) Tycho’s supernova; T hot (left) and T cold (right) (Forgive the jet colour scale; I was young and didn’t know better!) Negligible dust manufactured by Type-Ia supernovæ Which means all the iron depleted into dust got there some other way
Clark (PhD T., 2015) Synchrotron @ 160 μm Hot dust @ 160 μm Cold dust @ 160 μm We found 0.11 M ☉ supernova dust in the Crab Nebula Subsequent studies report values across 0.04–0.22 M ☉ range
(2015) Near-IR VIKING Ks Optical SDSS gri H-ATLAS 250 µm GALEX Far-UV Very blue (flux ratio FUV/K s > 25), flocculent, HI-dominated galaxies make up the majority of a blind low-z blind 250 µm selected survey.
Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) Several dex total range in κ d values. Commonly-used standard values span a factor of ~3 range
Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) Several dex total range in κ d values. Commonly-used standard values span a factor of ~3 range
Magellanic Clouds? Roman-Duval+ (2017); Clark+ (in prep.) • Herschel! • …Except faint structure at the edges got removed as ‘background’, as the map was too small; large-scale features get filtered out. • Okay, Planck then! • …And Planck is great! But its shortest band is 350μm, so you can’t constrain dust temperature. And beam is 10x worse than Herschel. • How about Spitzer? • …Only covers the shorter wavelengths, and iffy resolution. Plus, severe non-linearity issues at high surface brightness for 160μm. • But there’s always IRAS, right? • …Unless you want to observe something that is extended and has very high surface brightness. Like the Magellanic Clouds. • Urm, I suppose I could try using Akari? • … • Good point. How about JCMT? Or ISO? • …Never observed more than tiny parts of the Clouds. • I suppose that leaves…
(in prep.) COBE Far-infrared data, large angular scales IRAS Far-infrared data, medium angular scales Planck Submm data, large & medium angular scales COBE + IRAS FIR data, large and medium angular scales COBE + IRAS + Planck FIR-submm data, large & medium angular scales Herschel FIR-submm data, small angular scales COBE + IRAS + Planck + Herschel FIR-submm data, large & medium & small angular scales
Wiseman+ (2016) Wiseman+ (2016) and De Cia+ (2016) find DTM varies with metallicity, from DLA depletions; but for metallicities of >0.1 Z ☉ this variation is less than factor of ≤2. Jenkins+ (2009) find Milky Way variation of factor ≤2.7. Figure 7 from Wiseman+ (2016) Figure 15 from De Cia+ (2016)