Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ・ドリブン7ヶ条
Search
takashiyan
October 25, 2018
Business
1
110
データ・ドリブン7ヶ条
takashiyan
October 25, 2018
Tweet
Share
Other Decks in Business
See All in Business
会社紹介資料
ldf_tech
0
190
GLP_SustainabilityReport_2023
glp_jp
1
380
データガバナンスチームの結成で得た学び / Insights from the Data Governance Team
auto_yak_ant
0
940
ELEMENTS_CULTURE DECK
hrxteam
0
2k
AnyMind Group Company Deck (JP)
anymind
2
100k
インキュデータ会社紹介資料
okitsu
3
31k
Crisp Code inc. | わたしたちの事例/実績 - Portfolio
so_kotani
1
600
We Are PdE!! 〜高価値なプロダクトを作れるようになるための勉強会〜
leveragestech
1
460
ラシン株式会社 会社説明資料 / 「真剣勝負をしませんか?」
20150817
0
430
(6枚)クリティカルシンキング3つの手順 (ロジカルシンキングとの違い)
nyattx
PRO
1
200
HireRoo Culture Deck(日本語)
kkosukeee
1
24k
株式会社CINC 会社案内/Company introduction
cinchr
6
43k
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
Typedesign – Prime Four
hannesfritz
39
2.4k
Making Projects Easy
brettharned
115
5.9k
Unsuck your backbone
ammeep
668
57k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Side Projects
sachag
452
42k
Rails Girls Zürich Keynote
gr2m
93
13k
Transcript
データ・ドリブン7ヶ条 朝山高至
データ・ドリブンPDCAの流れ ~仮説起点~ 仮説を発見する (ユーザビリティテスト、ユーザーエク スプローラー、 TTP) 仮説を裏付ける データを見つける 施策に落とし込む テストの実施 テストの結果データ
から新たな仮説を得 る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブンPDCAの流れ ~ファクト起点~ ファクト (課題事実) を発見する ファクトを元に仮説を 作る 施策に落とし込む テストの実施 テストの結果データ から新たな仮説を得
る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブン7ヶ条
①思い込まずにデータを見てみる ②収集できてない必要データに気づく ③仮説と指標を持ってデータを見てみる ④バイアスの少ない解釈をする ⑤データをデザインして認知負担を減らす ⑥データを介したコミュニケーションをする ⑦データは意思決定のための材料 データ・ドリブン7ヶ条
①思い込まずにデータを見てみる データのない仮説は施策の成功確率が低い 主観や思い込みで意思決定をしない →仮説アイディアができたら、それを裏付けるデータを見てみる 例) 仮説アイディア:お気に入り一覧への導線に気づいていないのではないか データ :お気に入り一覧ページ導線のCTRを見てみる
②収集できてない必要データに気づく 自分でデータを見ることを心がけてみると、見たいのに取得できていないデータに気づく ➜取得したデータがとれるように開発を依頼する ➜GAやGTMで簡単に取得できる場合もある 例)スクロール計測、クリックイベント計測、コンテンツグループディメンションなど
③仮説と指標を持ってデータを見てみる 闇雲にデータを見まくる、必要のないデータを取得しようとする ➜時間がかかるのに、改善策に繋がるファクトやインサイトが見つからない ・仮説 ・検証したい指標 を明確化してからデータを見ると気づきが生まれやすい
④バイアスの少ない解釈をする ・データから見当違いな仮説を導き出してしまう ・労力をかけた施策の効果検証時にバイアスのかかった解釈をしてしまう ➜改善につながらない、KPIが悪化する ➜ユーザビリティテストなどで定性的な検証もすることで精度の高い仮説になる ➜工数のかかった施策の検証ほど公平に見る
⑤データをデザインして認知負担を減らす 認知負担がかからないデザインにすることで、 ・大事な変化に気づく ・チームメンバーに伝えたいメッセージが伝わる
⑤データをデザインして認知負担を減らす ×Badな例 縦軸が左右に二軸あり、どの軸がどのグラフを表してるのか直感的にわかりにくい
⑤データをデザインして認知負担を減らす ◦Betterな例 2つのグラフに分けてれば、認 知的負担を抑える事が出来る
⑥データを介したコミュニケーションをする 「コミュニケーションまでがセットでデータ分析」 据え置きのダッシュボードとかGAに見に行く感じだと、 せっかくデータがあっても チーム内でデータについて会話が発生しづらい。 重要指標が自動でオープンな環境で共有されるとコミュニケーションが生まれる ➜他の人がどうやってデータを見てるのかの勉強にもなる
⑦データは意思決定のための材料 ・データ分析自体が楽しくなっちゃう 飛距離を伸ばす目的でウェイトトレーニングをする野球選手 →ウェイト自体が楽しくなってボディビルダーになっちゃう
⑦データは意思決定のための材料 ・データはあくまで改善施策を見つけるための材料 ➜改善することが目的であることを忘れない