Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ・ドリブン7ヶ条
Search
takashiyan
October 25, 2018
Business
1
120
データ・ドリブン7ヶ条
takashiyan
October 25, 2018
Tweet
Share
Other Decks in Business
See All in Business
Nstock 採用資料 / We are hiring
nstock
29
310k
エンジニアのための事業貢献入門/A business introduction for engineers
dskst
30
7.4k
株式会社ファンコミュニケーションズ|会社説明資料 / Company Deck
fancomi_career
0
1k
心と心に橋を架けよう
viva_tweet_x
0
1.2k
チーム力を高める「ストロータワー」
chibanba1982
PRO
0
610
特別講義 理系のための法学入門
seko_shuhei
2
2.4k
株式会社kubellパートナー 会社説明資料 (MINAGINE事業版)
kubell_partner
2
590
LW_brochure_engineer
lincwellhr
0
34k
Recruitment Deck_Growth Strategy_202506
sixtypercent
0
620
アウトカムファーストな専門技術組織の構築と運用のための取り組み / Efforts to Build and Operate an Outcome-First Technical Expertise Organization
lycorptech_jp
PRO
5
470
ラクスパートナーズ採用ピッチ資料_エンジニア部門.pdf
rakuspartners_recruit
0
24k
CC採用候補者向けピッチ資料
crosscommunication
2
52k
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
830
The Cult of Friendly URLs
andyhume
79
6.5k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Become a Pro
speakerdeck
PRO
29
5.4k
Balancing Empowerment & Direction
lara
1
450
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Music & Morning Musume
bryan
46
6.7k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Transcript
データ・ドリブン7ヶ条 朝山高至
データ・ドリブンPDCAの流れ ~仮説起点~ 仮説を発見する (ユーザビリティテスト、ユーザーエク スプローラー、 TTP) 仮説を裏付ける データを見つける 施策に落とし込む テストの実施 テストの結果データ
から新たな仮説を得 る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブンPDCAの流れ ~ファクト起点~ ファクト (課題事実) を発見する ファクトを元に仮説を 作る 施策に落とし込む テストの実施 テストの結果データ から新たな仮説を得
る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブン7ヶ条
①思い込まずにデータを見てみる ②収集できてない必要データに気づく ③仮説と指標を持ってデータを見てみる ④バイアスの少ない解釈をする ⑤データをデザインして認知負担を減らす ⑥データを介したコミュニケーションをする ⑦データは意思決定のための材料 データ・ドリブン7ヶ条
①思い込まずにデータを見てみる データのない仮説は施策の成功確率が低い 主観や思い込みで意思決定をしない →仮説アイディアができたら、それを裏付けるデータを見てみる 例) 仮説アイディア:お気に入り一覧への導線に気づいていないのではないか データ :お気に入り一覧ページ導線のCTRを見てみる
②収集できてない必要データに気づく 自分でデータを見ることを心がけてみると、見たいのに取得できていないデータに気づく ➜取得したデータがとれるように開発を依頼する ➜GAやGTMで簡単に取得できる場合もある 例)スクロール計測、クリックイベント計測、コンテンツグループディメンションなど
③仮説と指標を持ってデータを見てみる 闇雲にデータを見まくる、必要のないデータを取得しようとする ➜時間がかかるのに、改善策に繋がるファクトやインサイトが見つからない ・仮説 ・検証したい指標 を明確化してからデータを見ると気づきが生まれやすい
④バイアスの少ない解釈をする ・データから見当違いな仮説を導き出してしまう ・労力をかけた施策の効果検証時にバイアスのかかった解釈をしてしまう ➜改善につながらない、KPIが悪化する ➜ユーザビリティテストなどで定性的な検証もすることで精度の高い仮説になる ➜工数のかかった施策の検証ほど公平に見る
⑤データをデザインして認知負担を減らす 認知負担がかからないデザインにすることで、 ・大事な変化に気づく ・チームメンバーに伝えたいメッセージが伝わる
⑤データをデザインして認知負担を減らす ×Badな例 縦軸が左右に二軸あり、どの軸がどのグラフを表してるのか直感的にわかりにくい
⑤データをデザインして認知負担を減らす ◦Betterな例 2つのグラフに分けてれば、認 知的負担を抑える事が出来る
⑥データを介したコミュニケーションをする 「コミュニケーションまでがセットでデータ分析」 据え置きのダッシュボードとかGAに見に行く感じだと、 せっかくデータがあっても チーム内でデータについて会話が発生しづらい。 重要指標が自動でオープンな環境で共有されるとコミュニケーションが生まれる ➜他の人がどうやってデータを見てるのかの勉強にもなる
⑦データは意思決定のための材料 ・データ分析自体が楽しくなっちゃう 飛距離を伸ばす目的でウェイトトレーニングをする野球選手 →ウェイト自体が楽しくなってボディビルダーになっちゃう
⑦データは意思決定のための材料 ・データはあくまで改善施策を見つけるための材料 ➜改善することが目的であることを忘れない