Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ・ドリブン7ヶ条
Search
takashiyan
October 25, 2018
Business
1
110
データ・ドリブン7ヶ条
takashiyan
October 25, 2018
Tweet
Share
Other Decks in Business
See All in Business
署内デジタルインフォボードの開発
tokyo_metropolitan_gov_digital_hr
0
330
Mercari-Fact-book_en
mercari_inc
1
23k
決算審査意見書自動作成ツール 改良プロジェクト
tokyo_metropolitan_gov_digital_hr
0
310
KRAF Impact Report 2024(日本語版)
kraf
0
220
会社説明資料_20241001.pdf
mina0307
0
140
HireRoo Culture Deck(日本語)
kkosukeee
2
27k
202412_CultureDeck
todoker
0
140
20241211_CMCNagoya_9
hideki_ojima
0
460
(7枚)具体と抽象の往復運動ができる上司と部下との4つの組合せ
nyattx
PRO
3
1.2k
ふわっとした考えを仮説にするまでのステップ
tumada
PRO
8
1.3k
CompanyDeck_v6.pdf
xid
3
17k
産業用自家消費型太陽光80kW 投資対効果(ROI)・投資回収期間シミュレーション結果(エネがえるBiz診断レポートサンプル)
satoru_higuchi
PRO
0
350
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
For a Future-Friendly Web
brad_frost
175
9.4k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Embracing the Ebb and Flow
colly
84
4.5k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Statistics for Hackers
jakevdp
796
220k
Into the Great Unknown - MozCon
thekraken
33
1.5k
Designing for humans not robots
tammielis
250
25k
We Have a Design System, Now What?
morganepeng
51
7.3k
Transcript
データ・ドリブン7ヶ条 朝山高至
データ・ドリブンPDCAの流れ ~仮説起点~ 仮説を発見する (ユーザビリティテスト、ユーザーエク スプローラー、 TTP) 仮説を裏付ける データを見つける 施策に落とし込む テストの実施 テストの結果データ
から新たな仮説を得 る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブンPDCAの流れ ~ファクト起点~ ファクト (課題事実) を発見する ファクトを元に仮説を 作る 施策に落とし込む テストの実施 テストの結果データ から新たな仮説を得
る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブン7ヶ条
①思い込まずにデータを見てみる ②収集できてない必要データに気づく ③仮説と指標を持ってデータを見てみる ④バイアスの少ない解釈をする ⑤データをデザインして認知負担を減らす ⑥データを介したコミュニケーションをする ⑦データは意思決定のための材料 データ・ドリブン7ヶ条
①思い込まずにデータを見てみる データのない仮説は施策の成功確率が低い 主観や思い込みで意思決定をしない →仮説アイディアができたら、それを裏付けるデータを見てみる 例) 仮説アイディア:お気に入り一覧への導線に気づいていないのではないか データ :お気に入り一覧ページ導線のCTRを見てみる
②収集できてない必要データに気づく 自分でデータを見ることを心がけてみると、見たいのに取得できていないデータに気づく ➜取得したデータがとれるように開発を依頼する ➜GAやGTMで簡単に取得できる場合もある 例)スクロール計測、クリックイベント計測、コンテンツグループディメンションなど
③仮説と指標を持ってデータを見てみる 闇雲にデータを見まくる、必要のないデータを取得しようとする ➜時間がかかるのに、改善策に繋がるファクトやインサイトが見つからない ・仮説 ・検証したい指標 を明確化してからデータを見ると気づきが生まれやすい
④バイアスの少ない解釈をする ・データから見当違いな仮説を導き出してしまう ・労力をかけた施策の効果検証時にバイアスのかかった解釈をしてしまう ➜改善につながらない、KPIが悪化する ➜ユーザビリティテストなどで定性的な検証もすることで精度の高い仮説になる ➜工数のかかった施策の検証ほど公平に見る
⑤データをデザインして認知負担を減らす 認知負担がかからないデザインにすることで、 ・大事な変化に気づく ・チームメンバーに伝えたいメッセージが伝わる
⑤データをデザインして認知負担を減らす ×Badな例 縦軸が左右に二軸あり、どの軸がどのグラフを表してるのか直感的にわかりにくい
⑤データをデザインして認知負担を減らす ◦Betterな例 2つのグラフに分けてれば、認 知的負担を抑える事が出来る
⑥データを介したコミュニケーションをする 「コミュニケーションまでがセットでデータ分析」 据え置きのダッシュボードとかGAに見に行く感じだと、 せっかくデータがあっても チーム内でデータについて会話が発生しづらい。 重要指標が自動でオープンな環境で共有されるとコミュニケーションが生まれる ➜他の人がどうやってデータを見てるのかの勉強にもなる
⑦データは意思決定のための材料 ・データ分析自体が楽しくなっちゃう 飛距離を伸ばす目的でウェイトトレーニングをする野球選手 →ウェイト自体が楽しくなってボディビルダーになっちゃう
⑦データは意思決定のための材料 ・データはあくまで改善施策を見つけるための材料 ➜改善することが目的であることを忘れない