Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ・ドリブン7ヶ条
Search
takashiyan
October 25, 2018
Business
1
120
データ・ドリブン7ヶ条
takashiyan
October 25, 2018
Tweet
Share
Other Decks in Business
See All in Business
akippa株式会社|Company Deck
akippa
0
170
【27新卒セールス(FS・店舗)】BuySell Technologies会社紹介資料
buyselltechnologies
0
250k
株式会社ステラセキュリティ会社紹介資料/sterrasec-introduction
sterrasec
0
450
生成AI専任営業が語るre:Inventで発表された生成AIアップデート情報
suzakiyoshito
0
240
Forward Deployed Engineer(FDE)の戦略的価値
tame
0
140
Corporate Story (GA technologies Co., Ltd.)
gatechnologies
0
440
組織でAIをQAに活用する仕組みづくり / Scaling AI-Powered QA Across Your Organization
medley
0
900
数字で見る松岡会計事務所
wf714201
0
210
BtoB SaaSにおける新規事業開発プロセス(ミライ塾ヒトコマ講座)
miyashino
0
340
(6枚)プレゼンの技法 ピラミッドストラクチャー PREP法 SDS法 STAR法
nyattx
PRO
1
250
曖昧なLLMの出力をプロダクト価値へつなげる、要求の具体化と評価
zerebom
4
440
Outputをもう一歩先へ 〜あなたの現在地に合わせた、量や質など「もう一歩先の」Output〜
amixedcolor
2
270
Featured
See All Featured
Designing Experiences People Love
moore
143
24k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
310
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Code Review Best Practice
trishagee
74
19k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
63
sira's awesome portfolio website redesign presentation
elsirapls
0
89
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Transcript
データ・ドリブン7ヶ条 朝山高至
データ・ドリブンPDCAの流れ ~仮説起点~ 仮説を発見する (ユーザビリティテスト、ユーザーエク スプローラー、 TTP) 仮説を裏付ける データを見つける 施策に落とし込む テストの実施 テストの結果データ
から新たな仮説を得 る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブンPDCAの流れ ~ファクト起点~ ファクト (課題事実) を発見する ファクトを元に仮説を 作る 施策に落とし込む テストの実施 テストの結果データ から新たな仮説を得
る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブン7ヶ条
①思い込まずにデータを見てみる ②収集できてない必要データに気づく ③仮説と指標を持ってデータを見てみる ④バイアスの少ない解釈をする ⑤データをデザインして認知負担を減らす ⑥データを介したコミュニケーションをする ⑦データは意思決定のための材料 データ・ドリブン7ヶ条
①思い込まずにデータを見てみる データのない仮説は施策の成功確率が低い 主観や思い込みで意思決定をしない →仮説アイディアができたら、それを裏付けるデータを見てみる 例) 仮説アイディア:お気に入り一覧への導線に気づいていないのではないか データ :お気に入り一覧ページ導線のCTRを見てみる
②収集できてない必要データに気づく 自分でデータを見ることを心がけてみると、見たいのに取得できていないデータに気づく ➜取得したデータがとれるように開発を依頼する ➜GAやGTMで簡単に取得できる場合もある 例)スクロール計測、クリックイベント計測、コンテンツグループディメンションなど
③仮説と指標を持ってデータを見てみる 闇雲にデータを見まくる、必要のないデータを取得しようとする ➜時間がかかるのに、改善策に繋がるファクトやインサイトが見つからない ・仮説 ・検証したい指標 を明確化してからデータを見ると気づきが生まれやすい
④バイアスの少ない解釈をする ・データから見当違いな仮説を導き出してしまう ・労力をかけた施策の効果検証時にバイアスのかかった解釈をしてしまう ➜改善につながらない、KPIが悪化する ➜ユーザビリティテストなどで定性的な検証もすることで精度の高い仮説になる ➜工数のかかった施策の検証ほど公平に見る
⑤データをデザインして認知負担を減らす 認知負担がかからないデザインにすることで、 ・大事な変化に気づく ・チームメンバーに伝えたいメッセージが伝わる
⑤データをデザインして認知負担を減らす ×Badな例 縦軸が左右に二軸あり、どの軸がどのグラフを表してるのか直感的にわかりにくい
⑤データをデザインして認知負担を減らす ◦Betterな例 2つのグラフに分けてれば、認 知的負担を抑える事が出来る
⑥データを介したコミュニケーションをする 「コミュニケーションまでがセットでデータ分析」 据え置きのダッシュボードとかGAに見に行く感じだと、 せっかくデータがあっても チーム内でデータについて会話が発生しづらい。 重要指標が自動でオープンな環境で共有されるとコミュニケーションが生まれる ➜他の人がどうやってデータを見てるのかの勉強にもなる
⑦データは意思決定のための材料 ・データ分析自体が楽しくなっちゃう 飛距離を伸ばす目的でウェイトトレーニングをする野球選手 →ウェイト自体が楽しくなってボディビルダーになっちゃう
⑦データは意思決定のための材料 ・データはあくまで改善施策を見つけるための材料 ➜改善することが目的であることを忘れない