Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データの"守り"を固めた2022
Search
Takuma Kouno
December 14, 2022
Technology
0
1.6k
データの"守り"を固めた2022
2022/12/14のData Engineering Studyの発表資料
Takuma Kouno
December 14, 2022
Tweet
Share
More Decks by Takuma Kouno
See All by Takuma Kouno
Data Reliabilityを 最小工数で実現するための データ基盤
takumakouno
0
99
位置情報データをコスト最適化しつつ 分析に活かすための データ管理と運用方法について
takumakouno
0
58
データ活用促進のためのデータ分析基盤の進化
takumakouno
2
2.9k
Other Decks in Technology
See All in Technology
AWS Control Tower に学ぶ! IAM Identity Center 権限設計の第一歩 / IAM Identity Center with Control Tower
y___u
1
240
ソースを読むプロセスの例
sat
PRO
15
9.4k
AIツールでどこまでデザインを忠実に実装できるのか
oikon48
6
3.5k
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
170
ローカルLLMとLINE Botの組み合わせ その2(EVO-X2でgpt-oss-120bを利用) / LINE DC Generative AI Meetup #7
you
PRO
0
110
Zephyr(RTOS)にEdge AIを組み込んでみた話
iotengineer22
0
200
Introdução a Service Mesh usando o Istio
aeciopires
1
240
難しいセキュリティ用語をわかりやすくしてみた
yuta3110
0
330
新規事業におけるGORM+SQLx併用アーキテクチャ
hacomono
PRO
0
430
なぜAWSを活かしきれないのか?技術と組織への処方箋
nrinetcom
PRO
5
1k
今この時代に技術とどう向き合うべきか
gree_tech
PRO
2
2.1k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Thoughts on Productivity
jonyablonski
70
4.9k
KATA
mclloyd
PRO
32
15k
4 Signs Your Business is Dying
shpigford
185
22k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
How STYLIGHT went responsive
nonsquared
100
5.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Producing Creativity
orderedlist
PRO
347
40k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Faster Mobile Websites
deanohume
310
31k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
データの”守り”を固めた2022 2022.12.14 株式会社Luup 河野匠真 Data Engineering Study #17
発表者 • 河野 匠真(@makako1124) • 株式会社Luup / Data Strategy部 Data
Engineering Team • 主にデータ基盤の構築から運用、整備を行う
Luupとは 電動キックボードや電動アシスト自転車をはじめとする、電動・小型・一人乗りのマイクロモビリティを、iOS/Android アプリから解錠・ 施錠を行って自由に乗車することのできるシェアリングサービス ポート数 車両数 5,000台以上 2,430以上 展開エリア:東京、大阪、京都、横浜など (2022年11月末時点)
1. Luupのデータとデータ基盤 2. 課題 a. Rawデータはそのまま使えない b. データがどこにあるかわからない 3. 結果
4. 今後実施したいこと 5. まとめ 6. 最後に Agenda
Luupのデータとデータ基盤 API Firebase Extensions 1. アプリや車両のデータをFunctionsで処理してBigQueryへ 2. アプリデータはFirestoreに保存され、BigQueryへ ※上図は簡潔に記載しており、詳細を割愛しています iOS/Androidアプリ
課題 Rawデータはそのまま使えない データがどこにあるかわからない ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています
課題 ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています データを綺麗にして誰でもアクセスできる環境を整えないと! データの守りを固める データの信頼性を上げ、 正しく一貫したデータに誰もがアクセスできるようにする
課題 Rawデータはそのまま使えない データがどこにあるかわからない ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています
データがどこにあるかわからない データがどこに存在しているのかわからない • ほしいときにすぐにデータが手に入らない • そもそも欲しいデータがあるのかわからない ※上図は簡潔に記載しており、詳細を割愛しています API Firebase Extensions
iOS/Androidアプリ
データがどこにあるかわからない ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています データカタログを用意 → データがどこにあり、誰が作成し、いつどれくらいの頻度で更新されるのか等の情報が誰で も確認できる → NotionのDatabaseを採用 (APIで毎日自動生成される仕組みに )
課題 Rawデータはそのまま使えない データがどこにあるかわからない ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています
Rawデータはそのまま使えない BigQueryに入ってきたRawデータはjson形式であり、そのまま使うにはさまざまな弊害が生じる • 膨大なクエリ容量 • 複雑なSQLが必要 • 不透明な定義のため抽出ユーザーによりデータが異なる ※上図は簡潔に記載しており、詳細を割愛しています API
Firebase Extensions iOS/Androidアプリ
Rawデータはそのまま使えない BigQueryに入ってきたRawデータはjson形式であり、そのまま使うにはさまざまな弊害が生じる 例) ライド(乗車)中のデータは、一定間隔で位置情報が更新され続けるので、 1レコードずつデータが追加されていく ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています ..., "routePoints":[{"location":{"_latitude": xxxx,"_longitude":xxxx},"timeStamp": {"_seconds":xxxx,"_nanoseconds":x
xxx}},...], ... ..., "routePoints":[{"location":{"_latitude": xxxx,"_longitude":xxxx},"timeStamp": {"_seconds":xxxx,"_nanoseconds":x xxx}},...], ...
Rawデータはそのまま使えない ※課題は他にもたくさんありますが、重要な二つに絞って紹介しています 1. ワークフローツール(Cloud Composer)の導入 → 安定したデータ処理環境を構築 2. 定義毎にデータ処理層を用意 →
クエリ容量の削減、データの整合性担保 3. 各種Datamartテーブルを用意 → 容易なSQLでデータ取得が可能
結果 • ダッシュボード毎にデータが異なるといったデータ不整合を防げるようになった。 • 一日に使用するクエリ容量が約半分までに減少した。 • 容易なSQLでデータが抽出できるようになった。 • どういうデータが存在するのか誰でも気軽に確認できるようになった。 構築完了したのが直近のため、結果はこれからさらにでてくると想定
今後実施したいこと 攻め=データの可用性を上げ、データが創出しうる価値を最大化する “攻め”の課題(一例) • Map Visualizationの拡充 • IoTデバイスのログ取得拡充と整備 • 会社全体のデータリテラシーの向上
etc API Firebase Extensions iOS/Androidアプリ
まとめ さまざまなツールを検証・導入し、最適なデータフローを考え実装した、 データの”守り”(=データの信頼性を上げ、正しく一貫したデータに誰もが アクセスできるようにする)を徹底した年
最後に Luup Developers Blogにてアドベントカレンダー実施中! データカタログにNotionを選択した理由についても掲載中! Luupでのデータ基盤構築、データ活用に少しでもご興味がある 方、ご連絡お待ちしております。 Luup採用情報