Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データセットシフト・Batch Normalization
Search
Taro Nakasone
September 05, 2025
Research
0
10
データセットシフト・Batch Normalization
※過去に作成した資料の内部共有用の掲載です
Taro Nakasone
September 05, 2025
Tweet
Share
More Decks by Taro Nakasone
See All by Taro Nakasone
[輪講] Transformer(大規模言語モデル入門第2章)
taro_nakasone
0
16
次元削減・多様体学習 /maniford-learning20200707
taro_nakasone
1
1.6k
論文読み:Identifying Mislabeled Data using the Area Under the Margin Ranking (NeurIPS'20) /Area_Under_the_Margin_Ranking
taro_nakasone
0
190
Other Decks in Research
See All in Research
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
110
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
140
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
410
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
音声感情認識技術の進展と展望
nagase
0
410
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
380
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
700
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
Language Models Are Implicitly Continuous
eumesy
PRO
0
360
Featured
See All Featured
Are puppies a ranking factor?
jonoalderson
0
2.4k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
Designing for humans not robots
tammielis
254
26k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Being A Developer After 40
akosma
91
590k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
32
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
49
For a Future-Friendly Web
brad_frost
180
10k
Test your architecture with Archunit
thirion
1
2.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Chasing Engaging Ingredients in Design
codingconduct
0
84
Transcript
データセットシフト 仲宗根太朗・櫻井研究室 学会名・セッション名・発表年月日・開催場所
はじめに ◼以下のデータシフトの問題設定がある ⚫Covariate Shift ⚫Target Shift ⚫Concept Shift ⚫Sample Selection
Bias ⚫Domain Shift ◼ただし,それそれの問題が必ずしも独立ではない
はじめに ◼以下のデータシフトの問題設定がある ⚫Covariate Shift ⚫Target Shift ⚫Concept Shift ⚫Sample Selection
Bias ⚫Domain Shift ◼ただし,それそれの問題が必ずしも独立ではない
Covariate Shift ◼定義 学習時とテスト時で入力変数の周辺分布が異なるという問題設定
Target Shift ◼定義 学習時とテスト時で出力変数の周辺分布が異なるという問題設定
Concept Shift ◼定義 学習時とテスト時で条件付き確率分布が異なるという問題設定
Sample Selection Bias ◼定義 観測データをデータセットに含めるかどうかを決める隠れた関数ξ が存在し,この関数が学習時とテスト時で異なるという問題設定
Domain Shift 潜在的に同じものを説明しているにも関わらず,計測技術や環境の違い などの影響で変数が異なってしまう問題設定
対策手法 ◼以下のような対策手法がある ⚫Batch Normalization
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼アルゴリズム
Batch Normalization ◼ミニバッチごとの平均分散を計算する
Batch Normalization ◼正規化を行う
Batch Normalization ◼正規化を行う 分母に𝜖を加えていますが、これ は微小値を表し、𝝈𝑩 𝟐 が小さい場 合に計算を安定されるため
Batch Normalization ◼レイヤの非線形性に対応させる調整
Batch Normalization ◼平均と分散の調節 単純にෞ 𝒙𝒊 をインプットとすると, 本来レイヤが持つ非線形性の表現 力を失っている可能性がある
Batch Normalization ◼例えば,シグモイド関数の場合
Batch Normalization ◼例えば,シグモイド関数の場合 インプットが-1から1の範囲で はほぼ線形になっている
Batch Normalization ◼この解決策として
Batch Normalization ◼以下のように横にシフト,スケール変化すれば良い
Batch Normalization ◼それを踏まえて,
Batch Normalization ◼平均に対応するパラメータ𝜷と分散に対応する𝜸を導入
Batch Normalization ◼平均に対応するパラメータ𝜷と分散に対応する𝜸を導入 ෞ 𝒙𝒊 を𝜷の分だけ横にシフト, 𝜸でスケールを変更できる.