(e.g., temperature and humidity) • A , ... , An, B , ... , Bn: sensor data Contraint • At most one type of sensors can be used from {Ai, Bi}. • Type A is used for Z , and type B is used for Z . A B A B A B Z Z f(x) = I(selected; Z) is -submod, if A, B are independent given Z. (general k is similar) / 6
[Buchbinder et al. ] -regret O(n √ T) [Roughgarden and Wang 8] k = -approx [Ward and Živný 6] -regret O(n √ T) general k -approx [Iwata, Tanigawa, and Yoshida 6] -regret O(nk √ T) / 6
) := : for j = , ... , n : : Compute a probability distribution p(j) ∈ ∆k : sample i ∼ p(j) and x(j) ← x(j− ) + iej : return x = x(n) Lemma ([Iwata, Tanigawa, and Yoshida 6]) Assume that for j = , ... , n, p(j) satisfies max i∗∈[k] a(i∗) − E i∼p(j) [b(i) + a(i)] ≤ for ∀a ≤ b, a(i) + a(i ) ≥ (i ≠ i ), where b(i) = ∆j,if(x(j− )) (∀i). Then x is / -approx. Such p(j) can be found via only b. / 6
game Aj for j ∈ [n] : for t = , ... , T : : x( ) t := : for j = , ... , n : : Obtain a distribution p(j) t ∈ ∆k from Aj 6: Sample i ∼ p(j) t and x(j) t ← x(j− ) t + iej : Play xt = x(n) t and observe ft. 8: for j = , ... , n : : Feedback b(j) t (·) = ∆·,jf(x(j− ) t ) to Aj Lemma Each Aj achieves O( √ T) “regret” =⇒ (xt) achieves O(nk √ T) / -regret. / 6
x Ay = max x∈X min y∈Y x Ay “It doesn’t matter which player plays first” Blackwell approachability ... multiobjective generalization S ℓ(x, y) S: closed convex set ℓ: vector valued func. ℓ(x, y) ∈ S ⇐⇒ X-player wins / 6
x Ay = max x∈X min y∈Y x Ay “It doesn’t matter which player plays first” Blackwell approachability ... multiobjective generalization S ℓ(x, y) S: closed convex set ℓ: vector valued func. ℓ(x, y) ∈ S ⇐⇒ X-player wins Application online learning with “nonstandard” regret (e.g., internal regret, swap regret, etc.) / 6
ℓ : X × Y → Rk : biaffine function S ⊆ Rk : closed convex set • satisfiable ⇐⇒ ∃x ∈ X∀y ∈ Y : ℓ(x, y) ∈ S. • response-satisfiable ⇐⇒ ∀y ∈ Y∃x ∈ X : ℓ(x, y) ∈ S. / 6
ℓ : X × Y → Rk : biaffine function S ⊆ Rk : closed convex set • satisfiable ⇐⇒ ∃x ∈ X∀y ∈ Y : ℓ(x, y) ∈ S. • response-satisfiable ⇐⇒ ∀y ∈ Y∃x ∈ X : ℓ(x, y) ∈ S. • halfspace-satisfiable ⇐⇒ ∀ halfspace H: S ⊆ H is satisfiable. / 6
ℓ : X × Y → Rk : biaffine function S ⊆ Rk : closed convex set • satisfiable ⇐⇒ ∃x ∈ X∀y ∈ Y : ℓ(x, y) ∈ S. • response-satisfiable ⇐⇒ ∀y ∈ Y∃x ∈ X : ℓ(x, y) ∈ S. • halfspace-satisfiable ⇐⇒ ∀ halfspace H: S ⊆ H is satisfiable. • approachable ⇐⇒ ∃ algorithm A s.t. ∀(yt)t∈[T] ⊆ Y, xt := A(y , ... , yt− ) satisfies dist T t∈[T] ℓ(xt, yt), S → as T → ∞. / 6
ℓ : X × Y → Rk : biaffine function S ⊆ Rk : closed convex set • satisfiable ⇐⇒ ∃x ∈ X∀y ∈ Y : ℓ(x, y) ∈ S. • response-satisfiable ⇐⇒ ∀y ∈ Y∃x ∈ X : ℓ(x, y) ∈ S. • halfspace-satisfiable ⇐⇒ ∀ halfspace H: S ⊆ H is satisfiable. • approachable ⇐⇒ ∃ algorithm A s.t. ∀(yt)t∈[T] ⊆ Y, xt := A(y , ... , yt− ) satisfies dist T t∈[T] ℓ(xt, yt), S → as T → ∞. / 6
y) := (x, y) ∈ R , S = {(x, x) : x ∈ [ , ]}. H S X Y This instance is • repsonse satisfiable (set x = y after seeing y) • halfspace-satisfiable • but NOT satisfiable. / 6
y) := (x, y) ∈ R , S = {(x, x) : x ∈ [ , ]}. H S X Y This instance is • repsonse satisfiable (set x = y after seeing y) • halfspace-satisfiable • but NOT satisfiable. Define xt := yt− for t = , , ... , T. Then T T t= ℓ(x, y) = T y + · · · + yT− y + · · · + yT− + T x yT → S / 6
a z ≤ } with S ⊆ H Output x ∈ X s.t. ℓ(x, y) ∈ H (∀y ∈ Y) X, Y: polyhedra =⇒ halfspace oracle is LP (strong duality) Algorithmic Blackwell [Abernethy, Bartlett, and Hazan ] Given a halfspace oracle, one can construct an efficient algorithm A for producing an approaching sequence (xt) s.t. dist T t∈[T] ℓ(xt, yt), S = O √ T . / 6
{feasible(a, b)}, S = Rk − , ℓ(p, y)(i) = a(i) − E i ∼p [b(i ) + a(i )]. S This instance is response-satisfiable! [Iwata, Tanigawa, and Yoshida 6] Lemma pt: approaching =⇒ sublinear “regret” in k-submod selection game. In particular, O( √ T) “regret” is achievable in polynomial time. / 6