Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CA x atmaCup 2nd, 5th Place Solution
Search
Shotaro Ishihara
December 08, 2020
Technology
2
910
CA x atmaCup 2nd, 5th Place Solution
「#7 CA x atmaCup 2nd 振り返り回」での発表資料
https://atma.connpass.com/event/198237/
Shotaro Ishihara
December 08, 2020
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
1
35
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
770
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
41
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
330
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
30
Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
upura
0
46
「極意本」サンプルコードをクラウド上で動かそう
upura
1
2.4k
論文紹介: Generating News-Centric Crossword Puzzles As A Constraint Satisfaction and Optimization Problem
upura
0
300
関東 Kaggler 会スポンサー資料
upura
0
1.8k
Other Decks in Technology
See All in Technology
事業者間調整の行間を読む 調整の具体事例
sugiim
0
1.4k
最速最小からはじめるデータプロダクト / Data Product MVP
amaotone
5
740
Fargateを使った研修の話
takesection
0
120
日経電子版におけるリアルタイムレコメンドシステム開発の事例紹介/nikkei-realtime-recommender-system
yng87
1
500
チームを主語にしてみる / Making "Team" the Subject
ar_tama
4
310
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
290k
CyberAgent 生成AI Deep Dive with Amazon Web Services / genai-aws
cyberagentdevelopers
PRO
1
480
20241031_AWS_生成AIハッカソン_GenMuck
tsumita
0
110
omakaseしないための.rubocop.yml のつくりかた / How to Build Your .rubocop.yml to Avoid Omakase #kaigionrails
linkers_tech
3
730
小規模に始めるデータメッシュとデータガバナンスの実践
kimujun
3
590
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
5
49k
Java x Spring Boot Warm up
kazu_kichi_67
2
490
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
32
1.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
328
21k
Building an army of robots
kneath
302
42k
Why Our Code Smells
bkeepers
PRO
334
57k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Teambox: Starting and Learning
jrom
132
8.7k
BBQ
matthewcrist
85
9.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Fontdeck: Realign not Redesign
paulrobertlloyd
81
5.2k
Adopting Sorbet at Scale
ufuk
73
9k
Facilitating Awesome Meetings
lara
49
6k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Transcript
CA × atmaCup 2nd 振り返り会 5th Place Solution ~チームマージ後の戦略を 中⼼に~
チーム: pao++ (u++ & pao) 2020年12⽉10⽇ 1
チーム紹介 public 4位 -> private 5位 u++: https://twitter.com/upura0 pao: https://twitter.com/pppaaaooo
2
最終的なベスト お互いの予測値の重み付き平均 u++: StratifiedKFoldで学習したLightGBM (public lb: 0.3015, 7位相当) pao: Timesplitで学習したLightGBM
(public lb: 0.2859, 13位相当) u++が使っている未来系特徴は最終⽇に近づくほど⽋損が増 える/paoさんのモデルの⽅が最終⽇に近づくほど性能が⾼い ので、最終⽇に近づくほどpaoさんの重みを上げている (public: 0.3072 -> 0.3089, 4位相当) 3
順位の変遷 4
チームマージ前(u++) 類似コンペのKaggle「TalkingData AdTracking Fraud Detection Challenge」の1位解法を参考にしつつ、1100程度 を作成 StratifiedKFoldで学習したLightGBMが、CV: 0.3736、LB: 0.2427
と過学習気味 (macbook pro RAM 16GB で取り組んでいた) 5
チームマージ前(pao) Timesplitで学習したLightGBM(最後1週間をValidに)で、 CV: 0.2460、LB: 0.2319 特徴量を作成しCVを確認しながら追加し、100程度 「特徴量を追加してもCVが下がってばかりで苦戦している」 -> 順位的には上にいたが過学習に苦しんでいたu++と、 特徴量のアイディアを欲していたpaoさんの利害が⼀致した
6
チームマージ後の戦略 . Slack に private channel を作成 . お互いの取り組みを簡単に共有 .
予想通り⽅向性がある程度異なっていたので、アンサンブル に期待しつつ、多様性を保ちながら互いのモデルを育ててい くことに . バリデーション、特徴量、ハイパーパラメータなどの気付き は積極的に議論 7
サブミット回数 ⽔曜夜のチームマージ時点で残り32サブ(23サブ消化) 最初にサブミット回数について確認 ひとまず1⼈10サブくらいは⾃由に 残りはアンサンブル? ⾦曜朝に2⼈ともLB: 0.264に到達 アンサンブル上げ幅の確認のため平均を提出し、LB: 0.280(相関は0.836) 改めて個々のモデルを伸ばす⽅針に(残り20サブ)
終了までどれくらい時間が使えるか、いつ最後のアンサ ンブルをするかも確認 8
モデルの改善(u++) paoさんのアドバイスに沿って、trainとtestで解離しがちな特徴量 を除いていくことでLBが向上 たとえば「⽇付の day 部分を抽出した特徴はtestの期間が8 ⽇間しかないので危険かも」など 1⼈で取り組んでいると気付きづらい点を指摘してもらった 具体的には特徴量を10個ほど削除することで、⼀気にLB: 0.2643
-> 0.2996 (チームマージで決意を固め、GCP RAM 128GB に課⾦) 9
モデルの改善(pao) u++側で効いていた特徴量のアイディアを活⽤ ユーザ単位で次の imp_at との差分など、未来特徴量 詳細はDiscussion参照(参加者のみ) https://www.guruguru.science/competitions/12/discussions/81f b3840-8902-4def-905f-a9a246f9aa39/ 10
未来特徴量の⼯夫 trainとtestでは期間が異なるので、同じように作るとtrainと testで解離が発⽣ trainの最初の⽅では、次の imp_at が14⽇後というデ ータが存在するが、testは8⽇間しかない testの最終⽇は、最⼤でも24時間後のデータ ⼀定の期間以上のデータを null
に置換すると解離が防 げる⼀⽅で、情報量が落ちる testの⽇付分の8モデルを作成(LB: 0.2705 -> 0.2869) 初⽇モデル: 8⽇後以降は null 、2⽇⽬モデル: 7⽇後以 降は null 、、、最終⽇モデル: 24時間以降は null 11
⽇付別モデルの⽐較 12
Date Weight Ensemble paoさんモデルの⽅がtest後半に強くなると想定した重み付き平均 (LB: 0.3072 -> 0.3089) pao_weight =
{ '2020-06-27': 0.1, '2020-06-28': 0.18, '2020-06-29': 0.26, '2020-06-30': 0.33999999999999997, '2020-07-01': 0.42000000000000004, '2020-07-02': 0.5, '2020-07-03': 0.58, '2020-07-04': 0.66 } ※ 重みは適当だが、late subしても超えられず 13
まとめ CA × atmaCup 2nd の 5位解法の紹介 paoさんとのチームマージ後の戦略を中⼼に 14