Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コンピュータビジョン4.2節
Search
Takahiro Kawashima
June 13, 2018
Science
1
330
コンピュータビジョン4.2節
研究室のゼミで発表したRichard Szeliski 著,玉木徹ら訳の『コンピュータビジョン − アルゴリズムと応用』4.2節のスライド
Takahiro Kawashima
June 13, 2018
Tweet
Share
More Decks by Takahiro Kawashima
See All by Takahiro Kawashima
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
270
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
170
論文紹介:Precise Expressions for Random Projections
wasyro
0
480
ガウス過程入門
wasyro
0
650
論文紹介:Inter-domain Gaussian Processes
wasyro
0
180
論文紹介:Proximity Variational Inference (近接性変分推論)
wasyro
0
350
機械学習のための行列式点過程:概説
wasyro
0
1.9k
SOLVE-GP: ガウス過程の新しいスパース変分推論法
wasyro
1
1.4k
論文紹介:Stein Variational Gradient Descent
wasyro
0
1.4k
Other Decks in Science
See All in Science
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1.1k
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
410
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
140
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
130
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
960
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.5k
SciPyDataJapan 2025
schwalbe10
0
270
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
150
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
320
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
650
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
200
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
370
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Bash Introduction
62gerente
615
210k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Optimizing for Happiness
mojombo
379
70k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
160
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
630
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Done Done
chrislema
185
16k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Transcript
4.2 અ Τοδ ౡوେ June 11, 2018 ిؾ௨৴େֶ ঙݚڀࣨ B4
࣍ 1. Τοδͷݕग़ 2. Τοδͷ࿈݁ 2
Τοδͷݕग़
Τοδͷݕग़ ྠֲઢͳͲͷΤοδ͖ΘΊͯଟ͘ͷใΛؚΉ ਓखʹΑΔΤοδݕग़ (ਤ 4.31) ˠ͜ΕΛύιίϯ༷ʹΒ͍ͤͨ 3
Τοδͷݕग़ ୯७ͳΤοδͷݕग़ํ๏ɿΤοδΛٸܹͳًมԽͱͯ͠ѻ͏ ˠًͷޯΛߟ͑Δ I(x) ΛϐΫηϧ x = (x, y)⊤ ্ͷًͱ͢Δͱɼًޯ
J(x) J(x) = ∇I(x) = ( ∂I ∂x , ∂I ∂y ) (x) (4.19) 4
Τοδͷݕग़ ϕΫτϧ J(x) ͷ • ͖ɿًؔͷ࠷ٸޯํ • େ͖͞ɿًؔͷมԽ߹͍ 5
Τοδͷݕग़ ߴपʹϊΠζ͕ଟ͍ ˠϩʔύεϑΟϧλͰฏԽ͔ͯ͠ΒޯΛܭࢉ ローパス フィルタ 6
Τοδͷݕग़ ϑΟϧλద༻ޙޯͷ͖͕ਖ਼͘͠อଘ͞Ε͍ͯͯ΄͍͠ ˠԁܗͷϑΟϧλ ՄೳͳԁܗϑΟϧλΨεϑΟϧλͷΈ (3.2 અɼਤ 3.14) ˠΤοδݕग़ͷͨΊͷϩʔύεϑΟϧλΨγΞϯ͕ఆ൪ 7
Τοδͷݕग़ ඍઢܗԋࢉͰ͋ΔͷͰଞͷϑΟϧλԋࢉͱՄ ΨεϑΟϧλؔΛ Gσ(x) = 1 2πσ2 exp ( −
x2 + y2 2σ2 ) ͱ͢Δ ฏԽޙͷը૾ͷޯΛ Jσ(x) ͱॻ͘ͱɼ Jσ(x) = ∇[Gσ(x) ∗ I(x)] = [∇Gσ(x)] ∗ I(x) (4.20) ͱͳΓɼΨεϑΟϧλؔͷඍͱͷͨͨΈࠐΈͰදݱͰ͖Δ 8
Τοδͷݕग़ ΨεϑΟϧλؔͷඍͷධՁ ∇Gσ(x) = ( ∂ ∂x , ∂ ∂y
)⊤ Gσ(x) = ( ∂ ∂x , ∂ ∂y )⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 ) = 1 σ2 (−x, − y)⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 ) ((4.21) ࣜͱ߹Θͳ͍͕ͨͿΜ͜ΕͰ͍͋ͬͯΔ) 9
Τοδͷݕग़ thinning ΤοδΛ 1 ըૉͷଠ͞Ͱදݱ͍ͨ͠߹͕ଟ͍ (ࡉઢԽ; thinning) (ը૾ [1] ΑΓ)
10
Τοδͷݕग़ thinning ʮΤοδʹରͯ͠ਨͳํͷޯڧ͕࠷େʹͳΔ࠲ඪʯΛٻ ΊΕΑ͍ ˠًͷ 2 ֊ඍ (ϥϓϥγΞϯ) Λߟ͑ΕΑͦ͞͏ͩ ͜ͷ
2 ֊ඍͷ Sσ(x) ɼ∇2 = ∇ · ∇(= div grad) ΑΓ Sσ(x) = ∇ · Jσ(x) = [∇2Gσ(x)] ∗ I(x) (4.22) 11
Τοδͷݕग़ thinning ΨεϑΟϧλͷϥϓϥγΞϯͷධՁ ∇2Gσ(x) = ∇ · [ 1 σ2
(−x, − y)⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 )] = ∂ ∂x [ − x 2πσ4 exp ( − x2 + y2 2σ2 )] + ∂ ∂y [ − y 2πσ4 exp ( − x2 + y2 2σ2 )] = 1 2πσ2 ( x2 + y2 − 2σ2 σ4 ) exp ( − x2 + y2 2σ2 ) 12
Τοδͷݕग़ thinning ∇2Gσ(x) ͷΛແࢹˠ LoG(Laplacian of Gaussian) ϑΟϧλ LoG(x) =
( x2 + y2 − 2σ2 σ4 ) exp ( − x2 + y2 2σ2 ) 13
Τοδͷݕग़ thinning Sσ(x) ͷූ߸͕มԽ ˠ૬ରతͳ໌Δ͕͞มԽ Sσ(x) ͷθϩަࠩΛ୳ͤ Α͍ 14
Τοδͷݕग़ thinning sign(Sσ(xi)) ̸= sign(Sσ(xj)) ͱͳΔྡϐΫηϧ xi, xj ͓Αͼθ ϩަࠩ
xz Λ୳͢ Sσ(xi) ͱ Sσ(xj) ͱΛ݁Ϳઢ͕θϩͱަࠩ͢Δ xz ΛٻΊΔ 15
Τοδͷݕग़ thinning Sσ(xj) − Sσ(xi) xj − xi (xz −
xi) + Sσ(xi) = 0 ∴ xz = xiSσ(xj) + xjSσ(xi) Sσ(xj) + Sσ(xi) ͕ಘΒΕΔɽ3 ࣍ݩҎ্ͷ߹ಉ༷ʹ xz = xiSσ(xj) + xjSσ(xi) Sσ(xj) + Sσ(xi) (4.25) Ͱ͋Δ 16
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ LoG ʹదͳ σ ΛઃఆˠӶ͍/ಷ͍ΤοδΛநग़ (ਤ 4.32, (b), (c))
17
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ ͍ײͰΤοδΛͱΓ͍ͨͳΒʁ ˠεέʔϧεϖʔεͷΞϓϩʔν 1. ͍͔ͭ͘ͷ σ Λ༻ҙ 2. ͦΕͧΕͷ
σ ʹ͍ͭͯޯ ͱ 2 ֊ඍΛܭࢉ 3. ҆ఆʹΤοδΛݕग़Ͱ͖Δ ࠷খͷ σ ΛબɼͦΕΑΓ େ͖͍ σ Ͱݕग़͞ΕͨΤο δΛՃ 18
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ ͍ σ ͰΤοδΛநग़ (ਤ 4.32, (f)) 19
Τοδͷݕग़ Χϥʔը૾ͰͷΤοδݕग़ Χϥʔը૾ͰΤοδݕग़Λ͍ͨ͠ ୯७ʹًޯΛݟΔͱɼً৭ؒͷΤοδΛݕग़Ͱ͖ͳ͍ ղܾҊ 1ɿRGB ֤͝ͱʹًޯΛܭࢉ͢Δ • ֤৭Ͱූ߸ͷҟͳΔޯ͕ग़Δͱɼ୯७ͳ͠߹ΘͤͰ૬ ࡴ͕ى͜Δ
ղܾҊ 2ɿ֤ըૉͷपลͰہॴతͳ౷ܭྔΛ͍Ζ͍ΖௐΔ • ୯७ͳًɾ໌ɾ৭͚ͩͰͳ͘ɼςΫενϟͷมԽͳͲ ଊ͑ΒΕΔ 20
Τοδͷݕग़ ਤ 4.33ɽBGɿ໌ɼCGɿ৭ɼTGɿςΫενϟ 21
Τοδͷ࿈݁
Τοδͷ࿈݁ நग़͞ΕͨΤοδΛ࿈݁ͯ͠Ұܨ͗ʹ͍ͨ͠ thinning ͞ΕͨΤοδͷըૉใΛ͍࣋ͬͯΔͱָ ˠ͍ۙΛ୳ࡧͯ͠ܨ͛Α͍ ΤοδΛ࿈݁͢ΔͱΑΓѹॖͨ͠දݱ͕ՄೳʹͳΔ 22
Τοδͷ࿈݁ νΣΠϯίʔυ 8 ͭͷํ֯ (N, NE, E, SE, S, SW,
W, NW) Λ 3bit ͰίʔυԽ (ਤ 4.34) 23
Τοδͷ࿈݁ νΣΠϯίʔυ νΣΠϯίʔυͰͷΤϯίʔυޙɼϥϯϨϯάεූ߸Ͱ͞Βʹѹ ॖͰ͖Δ ϥϯϨϯάεූ߸ ܁Γฦ͠ͷจࣈΛͦͷճͰදݱ AAAABBBCCCCC ˠ A4B3C5 24
Τοδͷ࿈݁ arc-length parameterization ʮހʯͷ͞ͱΤοδ࠲ඪΛ༻͍ͯදݱ (ਤ 4.35) 1. x0 = (1,
0.5)⊤ ͔Βελʔτ 2. s = 0 ʹ x0 ͷ࠲ඪΛͦΕͧΕϓϩοτ 3. x1 = (2, 0.5)⊤ 4. s = ∥x1 − x0∥ = 1 ʹ x1 ͷ࠲ඪΛͦΕͧΕϓϩοτ 5. ࢝ʹΔ·Ͱ܁Γฦ͢ 25
Τοδͷ࿈݁ arc-length parameterization Q. Կ͕͏Ε͍͠ͷ͔ʁ A. ϚονϯάฏԽͳͲͷॲཧ͕༰қʹͳΔ ܗঢ়ͷࣅͨΤοδΛߟ͑Δ (ਤ 4.36)
26
Τοδͷ࿈݁ arc-length parameterization 1. Τοδͷ࠲ඪͷฏۉ ¯ x0 = ∫ S
x(s)ds Λݮࢉ 2. s Λ 0 ∼ S ͔Β 0 ∼ 1 ʹਖ਼نԽ 3. ͦΕͧΕʹ͍ͭͯϑʔϦΤม 27
Τοδͷ࿈݁ arc-length parameterization ͱͷΤοδಉ͕࢜εέʔϦϯάͱճసͷҧ͍͔͠ͳ͍ ˠϑʔϦΤมͷ݁ՌڧͱҐ૬ͷζϨ͔͠ҟͳΒͳ͍ͣ (։͕࢝ҟͳΔͱઢܗͷҐ૬ͷζϨग़Δ) 28
Τοδͷ࿈݁ arc-length parameterization ࢄԽ࣌ʹੜ͡ΔϊΠζͷฏԽʹ༗ޮ ͔͠͠ී௨ʹฏԽϑΟϧλΛ͔͚Δͱॖখͯ͠ฏԽ͞ΕΔ ਤ 4.37(a), ԁͷܘ͕ॖখ͍ͯ͠Δ 29
Τοδͷ࿈݁ arc-length parameterization 2 ֊ඍʹجͮ͘Φϑηοτ߲Λ͔͢ɼΑΓେ͖ͳ (ͦ͢ͷ ͍ʁ) ฏԽϑΟϧλΛ༻͍Δ ਤ 4.37(b)
30
·ͱΊ • άϨʔεέʔϧը૾ͰًޯͰΤοδΛݕग़ ϊΠζআڈಉ࣌ʹߦ͏ͨΊʹΨγΞϯϑΟϧλͷ 1 ֊ඍ ͱͨͨΈࠐΉ • thinning ͍ͨ͠߹
LoG ϑΟϧλΛ͔͚ͯθϩަࠩΛٻ ΊΔ • Χϥʔը૾ͷΤοδݕग़໌ɾ৭ɾςΫενϟͳͲͷ౷ܭ ྔ͕༗ޮ • thinning ͞ΕͨΤοδͷ࿈݁νΣΠϯίʔυ arc-length parameterization ͕༗ޮ • arc-length parameterization ޙϚονϯάϊΠζআڈΛ͠ ͍͢ 31
References I [1] R. Rao. Image sampling, pyramids, and edge
detection. https://courses.cs.washington.edu/courses/cse455/ 09wi/Lects/lect3.pdf, 2009.