Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Open Source Data Tooling Landscape
Search
Carol Willing
PRO
August 24, 2021
Technology
1
95
The Open Source Data Tooling Landscape
Given for Coiled webinar on August 24, 2021.
Carol Willing
PRO
August 24, 2021
Tweet
Share
More Decks by Carol Willing
See All by Carol Willing
CPython: Foundation for Scientific Python
willingc
PRO
0
25
Be a SLQAR. Micromentoring for all.
willingc
PRO
0
34
Lessons in Leadership: Python, AI, and Heuristics
willingc
PRO
0
120
Embracing Python, AI, and Heuristics: Optimal Paths for Impactful Software
willingc
PRO
0
910
Thriving with Python: Navigate the pitfalls in a polyglot world
willingc
PRO
1
190
Pragmatic Python: Python 3.12 and beyond
willingc
PRO
0
200
The Future is Notebooks
willingc
PRO
0
120
PyCon 2023 Keynote
willingc
PRO
0
210
Python: The People's Programming Language
willingc
PRO
0
100
Other Decks in Technology
See All in Technology
あとはAIに任せて人間は自由に生きる
kentaro
2
140
Amazon Inspector コードセキュリティで手軽に実現するシフトレフト
maimyyym
0
140
夏休みWebアプリパフォーマンス相談室/web-app-performance-on-radio
hachi_eiji
0
260
AIが住民向けコンシェルジュに?Amazon Connectと生成AIで実現する自治体AIエージェント!
yuyeah
0
180
リモートワークで心掛けていること 〜AI活用編〜
naoki85
0
190
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
2
960
「Roblox」の開発環境とその効率化 ~DAU9700万人超の巨大プラットフォームの開発 事始め~
keitatanji
0
140
Agent Development Kitで始める生成 AI エージェント実践開発
danishi
0
160
コミュニティと計画的偶発性理論 - 出会いが人生を変える / Life-Changing Encounters
soudai
PRO
4
250
プロジェクトマネジメントは不確実性との対話だ
hisashiwatanabe
0
140
Mackerel in さくらのクラウド
cubicdaiya
1
130
Cloud WANの基礎から応用~少しだけDeep Dive~
masakiokuda
3
120
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Producing Creativity
orderedlist
PRO
347
40k
The Language of Interfaces
destraynor
159
25k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Six Lessons from altMBA
skipperchong
28
4k
Documentation Writing (for coders)
carmenintech
73
5k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
770
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
RailsConf 2023
tenderlove
30
1.2k
Transcript
The Open Source Data Tooling Landscape Carol Willing VP of
Learning Noteable web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Headline Slide Sub-headline The 10 Best Practices for Remote Software
Engineering Focusing on the human element of remote software engineer productivity Vanessa Sochat DOI:10.1145/3459613 Attribution: xkcd 1 Today
Common Data Challenges Exploring Solutions with Open Source Data Tools
2 Data
SCALE
SPEED
CONNECTIONS
CHOICES
The Data Pipeline Perspectives Attribution: Red Bull 3 People
The Data Pipeline Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Executives Opportunity and
Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear Users Productivity and Needs
Attribution: Red Bull Start small...
@WillingCarol 14 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l ...and scale.
Open Source Data Tooling Landscape 4 Ecosystem
Python R Julia Fortran SQL C++ Go Rust Java Scala
4 Ecosystem Programming Languages JavaScript TypeScript Data Analysis Workflows Interactivity
4 Ecosystem Data Work fl ow Project Definition Data Collection
Computation and Modeling Evaluation Deploy at Scale Monitoring Data Preparation Exploratory Analysis Share Results Revisit Goals
Challenges ‣ Foundation (existing infrastructure to cloud) ‣ Variability (DIY
to Hosted/Managed Service) ‣ Complexity ‣ Language ecosystems ‣ Growth
Challenges (cont.) ‣ Best practices / de facto standards ‣
Jargon ‣ Abstractions ‣ Hype CRISP-DM Attribution: IBM Cross-industry standard process for data mining 1996
4 Ecosystem Taxonomy Business Goals People Ethics Model creation Training
Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical
4 Ecosystem Julia Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical DrWatson.jl ParameterSchedulers.jl Pluto.jl IJulia JupyterLab nteract VSCode Plots.jl (Viz) Gadfly.jl (Viz) Makie.jl (Viz - GPU) Flux.jl (ML) Knet.jl (ML/BL) MLJ.jl (ML) Mocha.jl (ML/DL) Tensorflow.jl (ML/DL wrapper) JuMP (optimization) Dataframes.jl ProgressMeters.jl
4 Ecosystem Python Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical Dask JupyterHub Binder Kubernetes papermill Dagster Airflow prefect scipy statsmodel JupyterLab nteract VSCode matplotlib seaborn altair plotly numpy scikit-learn pytorch tensorflow pandas PyJanitor dask datasette evidently bokeh panel voila dash python scripts napari geopandas feast keras fastai fairlearn
4 Ecosystem R Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical RStudio JupyterLab IRkernel ggplot tidyverse dplyr tidyr lubridate readr readxl googlesheets4 ggplot2 rmarkdown Shiny plumber purrr reticulate Keras Tensorflow sparklyr ropensci.org knitr forcats mlr3 CNTK theanos
Algorithmic Business Thinking (ABT) 5 Management Paul McDonagh-Smith MIT Sloan
School of Management https://mitsloan.mit.edu/faculty/directory/paul-mcdonagh-smith https://www.youtube.com/watch?v=bqtn2tYg-kw
@WillingCarol 25 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l Got data at scale? Use open source tools.
web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Thank you The Open Source Data Tooling Landscape Carol Willing VP of Learning Noteable
6 Additional Resources https://krzjoa.github.io/awesome-python-data-science/#/ https://github.com/FavioVazquez/ds-cheatsheets https://www.the-modeling-agency.com/crisp-dm.pdf https://github.com/academic/awesome-datascience