Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Extending Pandas using Apache Arrow and Numba

Extending Pandas using Apache Arrow and Numba

With the latest release of Pandas the ability to extend it with custom dtypes was introduced. Using Apache Arrow as the in-memory storage and Numba for fast, vectorized computations on these memory regions, it is possible to extend Pandas in pure Python while achieving the same performance of the built-in types. In the talk we implement a native string type as an example.

Uwe L. Korn

July 08, 2018
Tweet

More Decks by Uwe L. Korn

Other Decks in Programming

Transcript

  1. 4 • Senior Data Scientist at Blue Yonder (@BlueYonderTech) •

    Apache {Arrow, Parquet} PMC • Data Engineer and Architect with heavy focus around Pandas About me xhochy [email protected]
  2. 5 1. Shortcomings of Pandas 2. ExtensionArrays 3. Arrow for

    storage 4. Numba for compute 5. All the stuff Agenda
  3. 6 Pandas Series • Payload stored in a numpy.ndarray •

    Index for data alignment • Rich analytical API • Accessors like .dt or .str
  4. 7 Shortcomings • Limited to NumPy data types, otherwise object

    • NumPy’s focus is numerical data and tensors • Pandas performs well when NumPy performs well • Most popular: • no native variable-length strings • integers are non-nullable
  5. 10 Why are objects bad? Python Data Science Handbook, Jake

    VanderPlas; O’Reilly Media, Nov 2016 https://jakevdp.github.io/PythonDataScienceHandbook/02.01-understanding-data-types.html
  6. 11 Extending Pandas (0.23+) • Two new interfaces: • ExtensionDtype

    • What type of scalars? • ExtensionArray • Implement basic array ops • Pandas provides algorithms on top
  7. 13 Extending Pandas (0.23+) • _from_sequence • _from_factorized • __getitem__

    • __len__ • dtype • nbytes • isna • copy • _concat_same_type https://pandas.pydata.org/pandas-docs/stable/generated/pandas.api.extensions.ExtensionArray.html 13
  8. 14 Apache Arrow • Specification for in-memory columnar data layout

    • No overhead for cross-system communication • Designed for efficiency (exploit SIMD, cache locality, ..) • Exchange data without conversion between Python, C++, C(glib), Ruby, Lua, R, JavaScript, Go, Rust, Matlab and the JVM • Brought Parquet to Pandas and made PySpark fast (@pandas_udf)
  9. 15 Nice properties • More native datatypes: string, date, nullable

    int, list of X, … • Everything is nullable • Memory can be chunked • Zero-copy to other ecosystems like Java / R • Highly efficient I/O
  10. 16 Not so nice properties • Still a young project

    • Not much analytic on top (yet!) • Core is in modern C++ • Extremely fast but hard to extend in Python
  11. 20 Anatomy of an Arrow StringArray • 3 memory buffers

    • bitmap to indicate valid (non-null) entries • uint32 array of offsets: „where does the string start“ • uint8 array of characters (UTF-8 encoded) • int64 offset • allows zero-copy slicing
  12. 32 By JOEXX (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via

    Wikimedia Commons By JOEXX (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons 24. - 26. October + 2 days of sprints (27/28.10.) ZKM Karlsruhe, DE Karlsruhe Call for Participation opens next week.