Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices
Search
Yohei Munesada
April 28, 2017
Science
0
370
Data Science BOOTCAMP Practices
データサイエンス・機械学習の演習説明です。
http://www.sompo.io/bootcamp/
Yohei Munesada
April 28, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.3k
How to create a service, How to google !
yoheimune
0
310
Machine Learning Basic and Python
yoheimune
1
520
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
240
DevelopWorkflow and Solving Problems
yoheimune
0
450
Git and Github for Beginners
yoheimune
1
300
Data Science BOOTCAMP Practices - Recommendation
yoheimune
0
220
Machine Learning with Python
yoheimune
0
360
Python Basics for G's ACADEMY TOKYO
yoheimune
1
630
Other Decks in Science
See All in Science
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
190
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
570
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
160
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
CV_3_Keypoints
hachama
0
210
データベース03: 関係データモデル
trycycle
PRO
1
270
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
140
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.4k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
860
Celebrate UTIG: Staff and Student Awards 2025
utig
0
240
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
430
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Typedesign – Prime Four
hannesfritz
42
2.8k
Scaling GitHub
holman
463
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6.1k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Speed Design
sergeychernyshev
32
1.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Optimizing for Happiness
mojombo
379
70k
Site-Speed That Sticks
csswizardry
11
880
Transcript
Data Science BOOTCAMP ΞϓϦέʔγϣϯ੍࡞ԋश Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
िؒɺΈͳ͞·͍͔͕Ͱͨ͠Ͱ͠ΐ͏͔ʁ
May think as … 㾎ֶతͳجૅΛड͚͖ͯͨɻ 㾎Ӭా͞ΜߨٛͰ৭ʑͱख๏ΛֶΜͰ͖ͨɻ 㾎ߨٛதͷԋशΛղ͍͚ͨͲɺͬͱ͍ͯ͠Δͱ͜Ζ͋Δɻ 㾎੍࡞ԋशΛ௨ͯ͠ɺʹ͚͍ͨͱ͜Ζʂ
May think as … ͦ͏ͩʂԿ͔࡞ͬͯΈΑ͏ʂ
Exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝
બ՝
Objective ՌΛग़͢͜ͱ ϑϩʔʹԊͬͨ࡞ۀεςοϓΛ౿Ή͜ͱ
ϑϩʔʹԊͬͨ࡞ۀ
How to ԋशʹऔΓΉͷݸਓͰ ൃදάϧʔϓͰ
Schedule .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷൃද 5VF ϫʔΫ࣭࣌ؒٙԠλΠϜ 8FE ҙ՝ͷൃද 'SJ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens ར༻Մೳͳσʔλ ɹIUUQTHSPVQMFOTPSHEBUBTFUTNPWJFMFOT .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝
Exercises - MovieLens
Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Exercises - ࠃௐࠪ
Exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Exercises
- ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Exercises - ҙͷσʔλͰʂ
Exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Exercises - ػցֶशAPIΛͬͯʂ
Exercises બ՝͕͔͔࣌ؒΓ·͢ͷͰɺ ͓ૣΊʹʂ .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश
ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝ બ՝
Q and A ࣭ٙԠλΠϜ
Team Building άϧʔϓ͚Λ͠·͢ ʢʙਓఔʣ
Team Building ࣗݾհͱσΟεΧογϣϯ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ