Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices
Search
Yohei Munesada
April 28, 2017
Science
0
370
Data Science BOOTCAMP Practices
データサイエンス・機械学習の演習説明です。
http://www.sompo.io/bootcamp/
Yohei Munesada
April 28, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.3k
How to create a service, How to google !
yoheimune
0
310
Machine Learning Basic and Python
yoheimune
1
520
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
240
DevelopWorkflow and Solving Problems
yoheimune
0
450
Git and Github for Beginners
yoheimune
1
300
Data Science BOOTCAMP Practices - Recommendation
yoheimune
0
210
Machine Learning with Python
yoheimune
0
360
Python Basics for G's ACADEMY TOKYO
yoheimune
1
630
Other Decks in Science
See All in Science
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
130
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
160
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
300
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
370
2025-06-11-ai_belgium
sofievl
1
150
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
790
Machine Learning for Materials (Challenge)
aronwalsh
0
320
データベース01: データベースを使わない世界
trycycle
PRO
1
770
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
300
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
185
54k
The Language of Interfaces
destraynor
160
25k
GitHub's CSS Performance
jonrohan
1032
460k
Visualization
eitanlees
147
16k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How to Think Like a Performance Engineer
csswizardry
26
1.8k
How to Ace a Technical Interview
jacobian
279
23k
Scaling GitHub
holman
462
140k
Transcript
Data Science BOOTCAMP ΞϓϦέʔγϣϯ੍࡞ԋश Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
िؒɺΈͳ͞·͍͔͕Ͱͨ͠Ͱ͠ΐ͏͔ʁ
May think as … 㾎ֶతͳجૅΛड͚͖ͯͨɻ 㾎Ӭా͞ΜߨٛͰ৭ʑͱख๏ΛֶΜͰ͖ͨɻ 㾎ߨٛதͷԋशΛղ͍͚ͨͲɺͬͱ͍ͯ͠Δͱ͜Ζ͋Δɻ 㾎੍࡞ԋशΛ௨ͯ͠ɺʹ͚͍ͨͱ͜Ζʂ
May think as … ͦ͏ͩʂԿ͔࡞ͬͯΈΑ͏ʂ
Exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝
બ՝
Objective ՌΛग़͢͜ͱ ϑϩʔʹԊͬͨ࡞ۀεςοϓΛ౿Ή͜ͱ
ϑϩʔʹԊͬͨ࡞ۀ
How to ԋशʹऔΓΉͷݸਓͰ ൃදάϧʔϓͰ
Schedule .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷൃද 5VF ϫʔΫ࣭࣌ؒٙԠλΠϜ 8FE ҙ՝ͷൃද 'SJ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens ར༻Մೳͳσʔλ ɹIUUQTHSPVQMFOTPSHEBUBTFUTNPWJFMFOT .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝
Exercises - MovieLens
Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Exercises - ࠃௐࠪ
Exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Exercises
- ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Exercises - ҙͷσʔλͰʂ
Exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Exercises - ػցֶशAPIΛͬͯʂ
Exercises બ՝͕͔͔࣌ؒΓ·͢ͷͰɺ ͓ૣΊʹʂ .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश
ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝ બ՝
Q and A ࣭ٙԠλΠϜ
Team Building άϧʔϓ͚Λ͠·͢ ʢʙਓఔʣ
Team Building ࣗݾհͱσΟεΧογϣϯ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ