Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
tokyo_re_Growth2024_yoshi
Search
Yoshi
December 11, 2024
Technology
0
330
tokyo_re_Growth2024_yoshi
tokyo_re_Growth2024_yoshi
Yoshi
December 11, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
GitLab SelfManagedをCodePipelineのソースに設定する/SetGitLabSelfManagedtoCodePipeline
norihiroishiyama
1
120
panicを深ぼってみる
kworkdev
PRO
2
140
[TechNight #86] Oracle GoldenGate - 23ai 最新情報&プロジェクトからの学び
oracle4engineer
PRO
1
170
Agentic AI時代のプロダクトマネジメントことはじめ〜仮説検証編〜
masakazu178
3
370
2025/1/29 BigData-JAWS 勉強会 #28 (re:Invent 2024 re:Cap)/new-feature-preview-q-in-quicksight-scenarios-tried-and-tested
emiki
0
310
Amazon Aurora バージョンアップについて、改めて理解する ~バージョンアップ手法と文字コードへの影響~
smt7174
1
240
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
270
AWSエンジニアに捧ぐLangChainの歩き方
tsukuboshi
0
220
Enhancing SRE Using AI
yoshiiryo1
1
260
サーバーレスで楽しよう!お気軽に始められる3つのポイント / Have fun with Serverless!
_kensh
2
220
アクセシブルなマークアップの上に成り立つユーザーファーストなドロップダウンメニューの実装 / 20250127_cloudsign_User1st_FE
bengo4com
2
1.2k
Fin-JAWS第38回reInvent2024_全金融系セッションをライトにまとめてみた
mhrtech
1
100
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
427
64k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
20
2.4k
Site-Speed That Sticks
csswizardry
3
310
Code Review Best Practice
trishagee
65
17k
GraphQLとの向き合い方2022年版
quramy
44
13k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
Building Applications with DynamoDB
mza
93
6.2k
BBQ
matthewcrist
85
9.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
600
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Transcript
None
SNS投稿タグ あなたの声を聞かせてください! #cmregrowth をつけて SNS投稿を!
2024/12/10 運⽤イノベーション部 吉 達志郎 Sustainability Data Fabric フレームワークで持続可能な未来へ + Werner
Vogels による Keynote
4 AWS 事業本部 運⽤イノベーション部 吉 達志郎(よし たつしろう) ⽇々の業務 ‧事業会社様内の CCoE メンバーとして運⽤⽀援
好きな AWS サービス ‧AWS Cost Explorer、NW 関連 受賞歴 ‧⾃⽴⾛⾏ロボットレース Formula Pi Summer 2018 Champion ⾃⼰紹介 IT 関連の経歴 ‧SES として様々なプロジェクトに従事 ‧AWS の TAM としてエンタープライズのお客 様に技術⽀援 ‧2023/09 Classmethod に Join
Sustainability Data Fabric フレームワークで持続可能な未来
6 サステナビリティは組織にとって戦略 的に不可⽋な要素となっている。 しかし、多くの企業はサステナビリ ティ関連のデータを効果的に活⽤する ⽅法に困っているらしい。 世間では、サステナビリティが⼤事と⾔うけれど...
7 企業幹部の 95% がサステナビリティ データの重要性を認識しているが... 実際に⾼品質なデータを保有している 企業はわずか 27% 持続可能性のトレンドとデータの課題
8 ⼿作業による管理が依然として主流 86% もの企業が依然として⼿作業のス プレッドシートでデータを管理 ‧データを⼿作業で集めている ‧データが分散 ‧品質管理が難しい ‧レポート作成に時間がかかる 持続可能性のトレンドとデータの課題
解決への道筋
10 Sustainability Data Fabric とは? AWS が提供する持続可能性データ管理のため の包括的なソリューションフレームワーク。 1. 異なるデータソースへの接続‧収集
2. Porpose-built サステナビリティデータマネ ジメント 3. 社内とパートナソリューションを⽤いたデー タ統合 4. 将来的なユースケース向け拡張 Sustainability Data Fabric
11 ①様々なソースから、様々な形式のデータを⾃ 動抽出 ②抽出データの⼀元化と統合、データ品質の管 理、分析⽤のデータ準備とクレンジング ③抽出データから各種計算、レポーティング、 可視化、連携、共有 ④将来的なユースケース向け拡張 フレームワークの全体図
12 様々なソースから様々な形式でアクティビティ データの抽出を⾃動化。⽣成 AI を活⽤して データソースをクエリし、洞察を得る。 ‧公共事業会社 ‧ERP システム ‧ファイル転送
‧API ‧Web フォームやアンケート調査 ‧センサー、IoT デバイス ‧サードパーティーデータベース ‧サプライヤーデータ 異なるデータソースへの接続‧収集
13 サステナビリティデータの⼀元化と統合、デー タ品質の管理、分析⽤のデータ準備とクレンジ ング、透明なリネージュによる精度と監査可能 性の確保 ‧メタデータ管理 ‧データリネージュ ‧アクセス制御 ‧データ品質 ‧データ検索性
‧データプロファイリング Porpose-built サステナビリティデータマネジメント
14 独⾃のダッシュボード作成か、KPI の計算とレ ポート⽤に選択したパートナー SaaS アプリ ケーションを統合 ‧KPI 計算とレポート ‧内部レポート⽤
BI ツール ‧サプライヤーおよび顧客とのデータ交換 ‧組織間でのデータ共有 ‧⾼度な分析(⼀般的的な洞察、予測モデリン グ、シミュレーション) 社内とパートナソリューションを⽤いたデータ統合
15 新しいビジネスアプリケーションの構築 ‧carbon および ESG 規制報告 ‧製品の⼆酸化炭素排出量 ‧資源の最適化(⽔、廃棄物、エネルギー) ‧⽣物の多様性監視とリスク ‧バリューチェーンの透明性
‧物理的気候のリスク評価 将来的なユースケース向け拡張
Dr. Werner Vogels による Keynote
17 複雑さの管理をテーマにした Dr. Werner Vogels による Keynote クラウドシステムにおける複雑性の管理⽅法に ついて、AWS の
20 年の経験を基に解説。シス テムの進化可能性を重視し、適切な分割と⾃動 化によって複雑性を管理する重要性を説明。 Managing Complexity
18 Werner Vogels を中⼼に、S3(Simple Storage Service)の初期の開発チームの様⼦ を描写。 2000 年代初期、4-5 ⼈程度の⼩さなチームの様
⼦を回想。AWS の組織設計の原則、システム 設計の考え⽅、イノベーションの起源につて ユーモアを交えながら表現している。 ‧Two Pizza Team 誕⽣にまつわるエピソード ‧Glacier にまつわるエピソード ‧イノベーションの起源 Simplexity に関する⼨劇
19 AWS 創設以来 20 年間、システムの複雑性は増加 の⼀途をたどってきた。しかし、複雑性は避けられ ないが、管理は可能という考えのもと、システムの 設計と運⽤における重要な原則を確⽴してきた。 ‧進化可能性を要件として組み込む ‧複雑性を小さな部分に分解する
‧組織をアーキテクチャに合わせる ‧セル単位での組織化 ‧予測可能なシステム設計 ‧複雑性の自動化 AWS が学んだ重要な教訓
20 技術を通じた社会貢献の重要性を強調。特に、 国連の持続可能性⽬標達成に向けて、若い企業 や組織を⽀援する Tech Rescue の取り組みに ついて紹介。技術者の経験を活かした世界の問 題解決への参加を促進。 ‧2050年に向けた課題
‧技術者への呼びかけ ‧技術者の責任 社会貢献への呼びかけ
21 我々エンジニアが AI やテクノロジーを 活⽤することで単なる技術開発だけで なく、世界の重要な問題を解決するこ とが可能なのだというメッセージを強 く感じた。 おわりに
None