Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
Search
Yudai Hayashi
June 19, 2025
Technology
0
550
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
白金鉱業 Meetup Vol.19@六本木 で発表した内容です
Yudai Hayashi
June 19, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
8
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
29
MCPを理解する
yudai00
16
11k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
130
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
1.8k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
860
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
240
RustとPyTorchで作る推論サーバー
yudai00
12
7.3k
Other Decks in Technology
See All in Technology
FOSS4G 2025 KANSAI QGISで点群データをいろいろしてみた
kou_kita
0
410
インフラ寄りSREの生存戦略
sansantech
PRO
6
1.9k
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
3
9.7k
United Airlines Customer Service– Call 1-833-341-3142 Now!
airhelp
0
170
OpenTelemetryセマンティック規約の恩恵とMackerel APMにおける活用例 / SRE NEXT 2025
mackerelio
2
400
データ基盤からデータベースまで?広がるユースケースのDatabricksについて教えるよ!
akuwano
3
130
ビズリーチが挑む メトリクスを活用した技術的負債の解消 / dev-productivity-con2025
visional_engineering_and_design
4
7.9k
freeeのアクセシビリティの現在地 / freee's Current Position on Accessibility
ymrl
2
230
american aa airlines®️ USA Contact Numbers: Complete 2025 Support Guide
aaguide
0
320
サイバーエージェントグループのSRE10年の歩みとAI時代の生存戦略
shotatsuge
1
200
〜『世界中の家族のこころのインフラ』を目指して”次の10年”へ〜 SREが導いたグローバルサービスの信頼性向上戦略とその舞台裏 / Towards the Next Decade: Enhancing Global Service Reliability
kohbis
2
320
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
2
200
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.6k
Side Projects
sachag
455
42k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Become a Pro
speakerdeck
PRO
29
5.4k
How to train your dragon (web standard)
notwaldorf
96
6.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
It's Worth the Effort
3n
185
28k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Faster Mobile Websites
deanohume
307
31k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
© 2025 Wantedly, Inc. ユーザーのプロフィールデータを活 用した推薦精度向上の取り組み 白金鉱業 Meetup Vol.19@六本木 Jun.19
2025 - Yudai Hayashi
© 2025 Wantedly, Inc. 自己紹介 林 悠大 • 経歴: ◦
2022年に応用物理分野で Ph.D取得 ◦ 2022年にウォンテッドリー株式会社に新卒入社。データサイ エンティストとして推薦システムの開発に従事 @python_walker @Hayashi-Yudai
© 2025 Wantedly, Inc. 今日話すこと:プロフィールデータを上手く活用してマッチング精度向上を実現した取り組み • ウォンテッドリーでは、採用担当者が魅力的なユーザーを見つけるのを手助けするために 推薦システ ムを活用している •
埋め込みモデルを高度化することで、採用担当者が興味を持つユーザーをより多く抽出できるように した話 大量のユーザー・ 企業 ランキング 並べ替え対象の 抽出 並べ替え 2ステージ推薦 ここの改善の話をします
© 2025 Wantedly, Inc. 背景:採用担当者が過去にスカウトを送ったユーザーと似ているユーザーには興味を持つはず ユーザーの「似ている」をプロフィールを使って定量化 ? ? Aさん プロフィール
Aさんのプロフィールと似てるから スカウト送られそう Aさんのプロフィールと似てないから スカウト送られなさそう ユーザープロフィールの類似度によって並び替え候補の抽出を実現
© 2025 Wantedly, Inc. 課題:プロフィール情報の文脈まで活用できていなかった ? ? Aさん プロフィール Embedding
w2v モデル コサイン類似度 word2vecベースの手法を利用していたため、プロフィールの文脈までは 活用できていなかった
© 2025 Wantedly, Inc. 解決策:より高度な埋め込みモデルの利用 • multilingual-e5-small という埋め込みモデルを利 用するように変更 ◦
文脈情報を埋め込みに反映 ◦ 日本語を含む多言語の文章に対応 ◦ トークン長は512 • ウォンテッドリーのプロフィールは文章量が多いケース が多い ◦ 各パートを分割して、それぞれで Embeddingを 計算し、平均を利用 Attentionベースの手法を利用することで、より ”似 ている”の解像度を上げられることを期待
© 2025 Wantedly, Inc. 解決策:なぜmultilingual-e5-smallか • よりトークン長の長いモデル (RoSEtta-base-ja; 1,024トークン)も試したが、E5系の方がRecallが高 かった
◦ プロフィールを分割して Embedding化したことで、短いトークン長でも十分だった可能性 ◦ 扱えるトークン長が長くなる点よりも、モデル自体の我々のタスクにおける性能差で E5の方が勝って いた可能性 • E5系の中でもモデルサイズごとの比較をしたが、 multilingual-e5-small のRecall性能が最も良かっ た ◦ JMTEBでは、STS (=Semantic Text Similarity) において large < base < small という性能に なっているので、これと整合性のある結果 https://github.com/sbintuitions/JMTEB /blob/main/leaderboard.md#sts 一言で言うと「色々試した中でこれが一番良かったから」 もう少し考察すると...
© 2025 Wantedly, Inc. 結果:定性的に文脈的に似ているユーザーを抽出できるようになった Input “データを解析することによってユーザーが求めていることを発見し、より良い体験を届けられるようなデータエ ンジニアになりたい” • データを駆使
してマーケティングを革新したい。データ分析から得られるインサイトを基に、 Web広告やチ ラシなど... • エンジニア として働きたい。アプリ開発をしたい 変更前 変更後 (E5) • データサイエンティストや機械学習エンジニア など、ユーザーにもっと近い立場 に立って仕事したい。 • ログなどのデータを使用 して、ユーザーにとって最適解 を見つけること。
© 2025 Wantedly, Inc. 結果:ランキング性能やプロダクト KPIにも良い方向の変化 大量のユーザー・ 企業 ランキング 並べ替え対象の
抽出 並べ替え Recallの改善 NDCGの改善 オフライン性能に加えて、オンラインテストでの主要 KPIの改善も実現 主要KPIの改 善
© 2025 Wantedly, Inc. まとめ • 埋め込みモデルを改善することで、推薦精度を高めることができた取り組みについて紹介 • 並べ替え候補の抽出ロジックの改善を、後段のランキング性能や主要 KPIの改善まで伝播させることがで
きた ◦ プロフィールをパートごとに分割して平均することで、広い範囲の情報を Embeddingに含められる ようにした ◦ これまでより文脈的に似ているユーザーが抽出できていることを定性的に確認 ◦ オンラインテストにより主要 KPIが改善していることを確認