Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Polarsを活用した機械学習ジョブの高速化
Search
Yudai Hayashi
February 22, 2024
1
230
Polarsを活用した機械学習ジョブの高速化
Yudai Hayashi
February 22, 2024
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
RustとPyTorchで作る推論サーバー
yudai00
7
4.5k
BigQueryで作る簡単なFeature Store
yudai00
2
240
プロダクトのコードをPandasからPolarsへ書き換えた話
yudai00
8
2.5k
データサイエンティストになって得た学び
yudai00
1
150
社内での継続的な機械学習勉強会の開催のコツ
yudai00
2
670
会社訪問アプリ「Wantedly Visit」における新規ユーザーの行動量に基づいた推薦方策の選択
yudai00
0
1.4k
Voyagerを利用した宿画像の最近傍探索による候補生成
yudai00
1
200
推薦データ分析コンペに参加して得た知見
yudai00
2
400
論文紹介:Unbiased Delayed Feedback Label Correction for Conversion Rate Prediction
yudai00
0
300
Featured
See All Featured
Building an army of robots
kneath
302
43k
4 Signs Your Business is Dying
shpigford
180
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Designing for Performance
lara
604
68k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
GitHub's CSS Performance
jonrohan
1030
460k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
What's new in Ruby 2.0
geeforr
343
31k
Transcript
© 2024 Wantedly, Inc. Polarsを活用した機械学習ジョブの 高速化 みんなのPython勉強会#101 Jan. 22 2024
- Yudai Hayashi
© 2024 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 • 経歴:
◦ 東京大学工学系研究科でPh.D取得 ◦ 2022年にウォンテッドリーにデータサイ エンティストとして新卒入社。推薦シス テムの開発を行う • X: @python_walker • 趣味: ◦ 読書 ◦ 音楽聴くこと ◦ ウイスキー
© 2024 Wantedly, Inc. INTERNAL ONLY ジョブを高速化するモチベーション 実験 評価 改善
機械学習のPDCAサイクル • 機械学習ジョブの実行には長い時間が かかることが多い • ジョブの待ち時間を減らしてサイクルを 高速に回したい ここではpolarsを使ってテーブルデータの処理を高速化する手法を紹介 実験設計 > 1 h
© 2024 Wantedly, Inc. INTERNAL ONLY PolarsとPandas 主にPython Rust シングルコア
マルチコア 実装 処理 データの 持ち方 行指向 列指向 インメモリ インメモリ、遅延評価 polarsはpandasと同様、テーブルデータの処理をするためのライブラリ データ型 DataFrame, Series DataFrame, Series 10万 x 100 のDataFrameどうし のinner joinにかかる時間
© 2024 Wantedly, Inc. INTERNAL ONLY 実務におけるpolarsによる高速化の効果 日付をintに変換して差を計算 欠損時には欠損を残す when構文を使って条件分岐
結果を格納するカラム名を指定 Pandas Polars • 50 min → 1 min に 実行時間が短縮 • applyが不要になった ことで改善幅が大きく なった
© 2024 Wantedly, Inc. INTERNAL ONLY 遅延評価によるさらなる高速化・メモリ節約 公式ドキュメントより “...in the
lazy API the query is only evaluated once it is 'needed'.” Eager API ここで評価される Lazy API • 評価を遅らせることで処理速度を最適化 (↑の例だと6 %高速化(10万x100の大 きさのデータ)) • 必要なデータだけを読み込むので大規模データを扱う際にも有用 上から順番に処理
© 2024 Wantedly, Inc. INTERNAL ONLY まとめ • テーブルデータの処理にPolarsを使うことで高速化する手法を紹介 •
Pandasでapplyを使う必要がある処理はPolarsによる高速化の恩恵が大 きくなる可能性 • 遅延評価によって大規模データも効率的に扱える