Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Polarsを活用した機械学習ジョブの高速化
Search
Yudai Hayashi
February 22, 2024
1
320
Polarsを活用した機械学習ジョブの高速化
Yudai Hayashi
February 22, 2024
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
700
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
200
RustとPyTorchで作る推論サーバー
yudai00
11
7.1k
BigQueryで作る簡単なFeature Store
yudai00
2
340
プロダクトのコードをPandasからPolarsへ書き換えた話
yudai00
8
3.5k
データサイエンティストになって得た学び
yudai00
1
220
社内での継続的な機械学習勉強会の開催のコツ
yudai00
2
740
会社訪問アプリ「Wantedly Visit」における新規ユーザーの行動量に基づいた推薦方策の選択
yudai00
0
1.7k
Voyagerを利用した宿画像の最近傍探索による候補生成
yudai00
1
230
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
172
14k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
GraphQLとの向き合い方2022年版
quramy
45
14k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
135
33k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
GitHub's CSS Performance
jonrohan
1030
460k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Speed Design
sergeychernyshev
28
860
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
© 2024 Wantedly, Inc. Polarsを活用した機械学習ジョブの 高速化 みんなのPython勉強会#101 Jan. 22 2024
- Yudai Hayashi
© 2024 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 • 経歴:
◦ 東京大学工学系研究科でPh.D取得 ◦ 2022年にウォンテッドリーにデータサイ エンティストとして新卒入社。推薦シス テムの開発を行う • X: @python_walker • 趣味: ◦ 読書 ◦ 音楽聴くこと ◦ ウイスキー
© 2024 Wantedly, Inc. INTERNAL ONLY ジョブを高速化するモチベーション 実験 評価 改善
機械学習のPDCAサイクル • 機械学習ジョブの実行には長い時間が かかることが多い • ジョブの待ち時間を減らしてサイクルを 高速に回したい ここではpolarsを使ってテーブルデータの処理を高速化する手法を紹介 実験設計 > 1 h
© 2024 Wantedly, Inc. INTERNAL ONLY PolarsとPandas 主にPython Rust シングルコア
マルチコア 実装 処理 データの 持ち方 行指向 列指向 インメモリ インメモリ、遅延評価 polarsはpandasと同様、テーブルデータの処理をするためのライブラリ データ型 DataFrame, Series DataFrame, Series 10万 x 100 のDataFrameどうし のinner joinにかかる時間
© 2024 Wantedly, Inc. INTERNAL ONLY 実務におけるpolarsによる高速化の効果 日付をintに変換して差を計算 欠損時には欠損を残す when構文を使って条件分岐
結果を格納するカラム名を指定 Pandas Polars • 50 min → 1 min に 実行時間が短縮 • applyが不要になった ことで改善幅が大きく なった
© 2024 Wantedly, Inc. INTERNAL ONLY 遅延評価によるさらなる高速化・メモリ節約 公式ドキュメントより “...in the
lazy API the query is only evaluated once it is 'needed'.” Eager API ここで評価される Lazy API • 評価を遅らせることで処理速度を最適化 (↑の例だと6 %高速化(10万x100の大 きさのデータ)) • 必要なデータだけを読み込むので大規模データを扱う際にも有用 上から順番に処理
© 2024 Wantedly, Inc. INTERNAL ONLY まとめ • テーブルデータの処理にPolarsを使うことで高速化する手法を紹介 •
Pandasでapplyを使う必要がある処理はPolarsによる高速化の恩恵が大 きくなる可能性 • 遅延評価によって大規模データも効率的に扱える