Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Timee-event-Copilot
Search
Yuki Hattori
September 25, 2023
Technology
2
400
Timee-event-Copilot
Yuki Hattori
September 25, 2023
Tweet
Share
More Decks by Yuki Hattori
See All by Yuki Hattori
HOW TO READ Prompt Engineering for LLM (牛本)
yuhattor
19
7.1k
AI-Driven-Development-20250310
yuhattor
3
540
InnerSource Patterns - Japanese
yuhattor
1
61
Developer Summit 2025 [14-D-1] Yuki Hattori
yuhattor
28
15k
GitHubの軌跡:リポジトリからAIプラットフォームへ
yuhattor
3
190
コードAI本 - コード×AIーソフトウェア開発者のための生成AI実践入門
yuhattor
1
710
Code AI Findy Event
yuhattor
7
1.2k
コード✕AIーソフトウェア開発者のための生成AI実践入門~
yuhattor
4
1.7k
Productivity-Conference-GitHub-20240629
yuhattor
2
5.7k
Other Decks in Technology
See All in Technology
Reach American Airlines®️ Instantly: 19 Calling Methods for Fast Support in the USA
flyamerican
1
180
伴走から自律へ: 形式知へと導くSREイネーブリングによる プロダクトチームの信頼性オーナーシップ向上 / SRE NEXT 2025
visional_engineering_and_design
3
230
How Do I Contact HP Printer Support? [Full 2025 Guide for U.S. Businesses]
harrry1211
0
130
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
1
390
対話型音声AIアプリケーションの信頼性向上の取り組み
ivry_presentationmaterials
2
690
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
1
120
[ JAWS-UG千葉支部 x 彩の国埼玉支部 ]ムダ遣い卒業!FinOpsで始めるAWSコスト最適化の第一歩
sh_fk2
2
150
CDKコード品質UP!ナイスな自作コンストラクタを作るための便利インターフェース
harukasakihara
2
200
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
210
cdk initで生成されるあのファイル達は何なのか/cdk-init-generated-files
tomoki10
1
540
オフィスビルを監視しよう:フィジカル×デジタルにまたがるSLI/SLO設計と運用の難しさ / Monitoring Office Buildings: The Challenge of Physical-Digital SLI/SLO Design & Operation
bitkey
1
350
ClaudeCodeにキレない技術
gtnao
0
560
Featured
See All Featured
Building an army of robots
kneath
306
45k
Designing Experiences People Love
moore
142
24k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
740
Site-Speed That Sticks
csswizardry
10
700
Thoughts on Productivity
jonyablonski
69
4.7k
The Invisible Side of Design
smashingmag
301
51k
Adopting Sorbet at Scale
ufuk
77
9.5k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
How STYLIGHT went responsive
nonsquared
100
5.6k
Practical Orchestrator
shlominoach
189
11k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
開発⽣産性をあげる を 徹底解剖! Yuki Hattori Customer Success Architect GitHub Japan
None
開発者の⽣産性向上 本当の問題に集中でき、満⾜度も向上 イノベーションを加速 より速くプロトタイプやイノベーションを実現 スキルギャップを埋める 新しい開発⾔語や技術を習得 開発者に⼤きな アドバンテージを提供
55% 46% 74% のコードがCopilotによるもの 速くタスクを完了 がより満⾜する仕事に 集中できたと証⾔ プロジェクトの⽂脈に即したコードを提案
OpenAI Model 文脈 提案
今後のGitHub Copilot リファクタリング (コード翻訳) コードレビュー (コード解説) ドキュメント化 今後のGitHub Copilot ユニットテスト
コードエラー検知 デバッグ コードレビュー AI による Pull Request 現在のGitHub Copilot コメントをコードに変換 繰り返すコードを補完 代替⼿段を表⽰ 1 計画 2 分析 3 設計 4 実装 5 テストと統合 6 メンテナンス X エディタを⾶び出し SDLC 全体を AI で⽀援
GitHub Copilot X Copilot for Pull Requests Copilot for Docs
Copilot for the CLI Copilot Chat
GitHub Copilot Future コードやドキュメントから、ユニットテストを 自動生成 TestPilot Codespaces上に存在するすべてのコードを使う ことで提案を改善 GitHub Copilot
for *Your* Codebase キーボードを使わずにコードを書く Copilot Voice https://githubnext.com/
December, 2022 GitHub Copilot GitHub Copilot Behind the curtain
GitHub Copilot の裏側 • GitHub Copilot の仕組み • GitHub Copilot
がエディタの情報をどのように取るのか = GitHub Copilot Prompt Crafting • Tips and Tricks
GitHub Copilot の 3 Layer Copilot Platform Copilot Client OpenAI
Model API * 上記は GitHub Copilot のアーキテクチャを抽象化した図です Githubによって開発及び保守。 認証、セキュリティ、プライバシー Githubによって開発及び保守。 カスタムプロンプト作成と自動補完 ユーザーエクスペリエンスを提供 OpenAI によって開発 Azure でホスト スケーラブルなデリバリー
GitHub Copilot のモデル GitHub Copilot のモデル選定重要事項 • 精度 • 速度
←とても重要 現在は GPT3.5-turbo の派生版である Sahara-base を利用 Codex は今は利用しておりません 今後モデルは変わる可能性があります
Large Language Models LLM To k 1. Attention 2. Tokenization
3. Autoregressive(自己回帰型) Very Very …. Very Large Neural Network To,k ens To,k,ens in To,k,ens, in . Tokens in. To,k,ens, in, . テキストはトークンに分割され、モデルに1つずつ供給されます。 前のトークンに基づいて次のトークンを予測する、訓練済のモデルです。
Prompt Crafting • Language Marker: プログラミング⾔語情報 • Path Marker: 現在のファイルへのパス
• Neighboring Tabs: ⾮アクティブなオープンしているタブ Language Marker の例 "html": "<!DOCTYPE html>", "python": "#\!/usr/bin/env python3", "ruby": "#\!/usr/bin/env ruby",
Prompt Crafting: Markers Path: foo/foo.py Language Marker HTML: <!DOCTYPE html>
Python: #\!/usr/bin/env python3 Ruby: #\!/usr/bin/env ruby ファイルパスおよび言語マーカーは、強力なシグナルを言語モデルに 提供し、出力の構文と文法を調整します。
Prompt Crafting: 隣接ファイル Open Tab 1 Open Tab 2 他のオープンタブからのコード
スニペットは類似性を検索し、 プロンプトに追加のコンテキス トとして注入されます。
Snippet Inclusion – 隣接するタブ • 最⼤で 20 ファイルまで 過去の履歴 (FIFO)
を遡り読み込む • 同じ⾔語のファイルを読み込む
文字の類似性でファイル内を検索 • GitHub Copilot は 現在⽂字の類似性 を活⽤して類似性を求める • 関数名はシンプルかつ、意味のあるものにする必要性 •
AB テストなどでこの⽅法は変わります / カーソル履歴など • ⼀貫して⾔えること • ⼀貫性のある命名規則ときれいなコード • 現在何をしているのかにフォーカスしながら作業
GitHub Copilot の制限 • プロンプトの制限トークン数 • トークンが無限に渡せるわけではない • 渡せるトークンの数は増加中 •
より多くの情報を渡すには…? • ⽇本語よりも英語を使う • 短く、わかりやすい変数名 • ⼀⽅でトークンが多ければ確実に精度が上が るわけではないのでご注意を https://platform.openai.com/tokenizer
December, 2022 GitHub Copilot GitHub Copilot Tips and Tricks BJOBUJWFEFW
None
None
None
None
None
None
None
None
None
None
None
None
None
None
まとめ: あまり気にしすぎない • 「知っている」と「知らない」では GitHub Copilot の飼い慣らしに差はでますが、 GitHub ではそれを意識しないでも高いコード提案ができるようにプロダクトを作っています。 •
結局のところ「良いコーディング」をすれば、提案されるコードも「良いコード」になります。 • 人間にとって良いコーディング • 文脈を知らない人でもわかるようなコーディング • ミスを誘発しないような確かなコーディング
None
None