Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prompt FlowによるLLMアプリケーション開発
Search
Yuto Urushima
July 09, 2024
Programming
2
1.6k
Prompt FlowによるLLMアプリケーション開発
Yuto Urushima
July 09, 2024
Tweet
Share
More Decks by Yuto Urushima
See All by Yuto Urushima
Webエンジニアから生成AIエンジニアへ
yuto2000
10
300
LangGraphを用いたマルチエージェント
yuto2000
2
2.3k
Prompt FlowによるLLMOps
yuto2000
1
1.4k
Other Decks in Programming
See All in Programming
Level up your Gemini CLI - D&D Style!
palladius
1
180
スタートアップを支える技術戦略と組織づくり
pospome
8
15k
目的で駆動する、AI時代のアーキテクチャ設計 / purpose-driven-architecture
minodriven
11
4k
All(?) About Point Sets
hole
0
280
FluorTracer / RayTracingCamp11
kugimasa
0
200
認証・認可の基本を学ぼう前編
kouyuume
0
170
ハイパーメディア駆動アプリケーションとIslandアーキテクチャ: htmxによるWebアプリケーション開発と動的UIの局所的適用
nowaki28
0
350
社内オペレーション改善のためのTypeScript / TSKaigi Hokuriku 2025
dachi023
1
510
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
270
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
700
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
250
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
17
6.8k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Thoughts on Productivity
jonyablonski
73
5k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
How to Ace a Technical Interview
jacobian
280
24k
Context Engineering - Making Every Token Count
addyosmani
9
470
Building an army of robots
kneath
306
46k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Mobile First: as difficult as doing things right
swwweet
225
10k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
82
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Optimizing for Happiness
mojombo
379
70k
Transcript
Prompt Flowによる LLMアプリケーション開発 宇留嶋勇人
自己紹介 web系エンジニアで、最近はLangChainや Prompt Flowを使った生成AI周りの開発業務を 行ってます。 X: @3anlqblueE ウルシマ ユウト 宇留嶋 勇人
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
= 大規模言語モデル (LLM) によって動作する AI アプ リケーションの開発サイクル全体を合理化するために 設計された開発ツールのこと。 Prompt Flowは、AI
アプリケーションのPoC作成、実 験、デバック、デプロイのプロセスを簡素化する包括 的なソリューションを提供します。 https://learn.microsoft.com/ja-jp/azure/ai-studio/how-to/prompt-flow フロー例 Prompt Flowとは
Prompt Flowとは プロンプト Python処理 コード管理 可視化 Azure AI Studio
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Prompt Flowでできること - フロー、特にLLMとのインタラクションを簡単にデバッグ可 - フローを評価し、品質とパフォーマンスのメトリクスを計算 - テストと評価をCI/CDシステムに統合し、フローの品質を保証 - 選択したサービスプラットフォームにフローをデプロイするか、アプリ
のコードベースに簡単に統合可能 - Azure AI Studioにてチームで共同作業可能 https://microsoft.github.io/promptflow/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
LLMアプリケーションの開発 開発方法 • Azure AI Studio • VS Code 拡張機能
• CLI
LLMアプリケーションの開発 Azure AI Studio Azure AI Studio上で ツール(プロンプトフ ロー)を使う
LLMアプリケーションの開発 VS Code 拡張機能 Azure AI Studio同様に可視 化しながらローカル環境で 開発できる
LLMアプリケーションの開発 CLI フローの初期化、バリデーション、テスト、バッチ実行、トレース、 ビルド、エンドポイント作成 $ pf $ pfazure pfコマンドのAzure AI版
https://microsoft.github.io/promptflow/reference/pf-command-reference.html#
LLMアプリケーションの開発 バリアント(プロンプトチューニング) →生産性を高める、生成の質を高める、比較を容易にする
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
評価、トレース 評価 1. 自動評価 2. カスタム評価
評価、トレース 自動評価 Microsoftが監修したメトリックを使うことがで きる • パフォーマンスと品質メトリック ◦ 根拠性、関連性、コヒーレンス、流暢 性、GPTの類似性、F1 •
リスクと安全メトリック ◦ 自傷行為、悪意のある不公平、暴力的、 性的な内容、コンテンツ
評価、トレース カスタム評価 入力値、システムメトリックを出力 評価用フローを作成 (例: 固有表現抽出) ground truthとのマッチ度
評価、トレース トレース OpenTelemetry仕様に従っ て、LLMコールや関数、 LangChainやAutoGenなどの LLMフレームワークをトレー スできるトレース機能を提供 from promptflow.tracing import
start_trace start_trace() https://microsoft.github.io/promptflow/how-to-guides/tracing/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
デプロイ - CLIで開発サーバーデプロイ - Docker - オンラインエンドポイント - 関数として実行
デプロイ - CLIで開発サーバーデプロイ - Docker $ pf flow serve --source
<flow-folder> --port 8080 --host localhost $ curl http://localhost:8080/score --data ‘{“hoge”: … $ pf flow build --source <flow-folder> --output <output-dir> --format docker
デプロイ - オンラインデプロイメント Azure上に仮想マシンとインスタンス数を設定し簡単にデプロイ可能 - 関数として実行(既存アプリと統合し易い) from promptflow.client import load_flow
f = load_flow(“./example_flow/”) data = json.loads(request.get_data()) result_dict = f(**data)
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
まとめ Prompt FLowはLLMアプリケーションの開発を支える多様な機能 があり、開発サイクルを合理化している 是非、使ってみてください!