Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prompt FlowによるLLMアプリケーション開発
Search
Yuto Urushima
July 09, 2024
Programming
2
1.6k
Prompt FlowによるLLMアプリケーション開発
Yuto Urushima
July 09, 2024
Tweet
Share
More Decks by Yuto Urushima
See All by Yuto Urushima
Webエンジニアから生成AIエンジニアへ
yuto2000
2
250
LangGraphを用いたマルチエージェント
yuto2000
2
2k
Prompt FlowによるLLMOps
yuto2000
1
1.3k
Other Decks in Programming
See All in Programming
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
1
830
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
820
Julia という言語について (FP in Julia « SIDE: F ») for 関数型まつり2025
antimon2
3
970
C++20 射影変換
faithandbrave
0
500
既存デザインを変更せずにタップ領域を広げる方法
tahia910
1
240
カクヨムAndroidアプリのリブート
numeroanddev
0
430
Team topologies and the microservice architecture: a synergistic relationship
cer
PRO
0
910
生成AIコーディングとの向き合い方、AIと共創するという考え方 / How to deal with generative AI coding and the concept of co-creating with AI
seike460
PRO
1
320
GraphRAGの仕組みまるわかり
tosuri13
7
450
複数アプリケーションを育てていくための共通化戦略
irof
10
4k
Beyond Portability: Live Migration for Evolving WebAssembly Workloads
chikuwait
0
380
iOSアプリ開発で 関数型プログラミングを実現する The Composable Architectureの紹介
yimajo
2
210
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Faster Mobile Websites
deanohume
307
31k
Documentation Writing (for coders)
carmenintech
71
4.9k
Making Projects Easy
brettharned
116
6.2k
How to train your dragon (web standard)
notwaldorf
92
6.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Optimizing for Happiness
mojombo
379
70k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
41
7.3k
A Tale of Four Properties
chriscoyier
159
23k
Transcript
Prompt Flowによる LLMアプリケーション開発 宇留嶋勇人
自己紹介 web系エンジニアで、最近はLangChainや Prompt Flowを使った生成AI周りの開発業務を 行ってます。 X: @3anlqblueE ウルシマ ユウト 宇留嶋 勇人
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
= 大規模言語モデル (LLM) によって動作する AI アプ リケーションの開発サイクル全体を合理化するために 設計された開発ツールのこと。 Prompt Flowは、AI
アプリケーションのPoC作成、実 験、デバック、デプロイのプロセスを簡素化する包括 的なソリューションを提供します。 https://learn.microsoft.com/ja-jp/azure/ai-studio/how-to/prompt-flow フロー例 Prompt Flowとは
Prompt Flowとは プロンプト Python処理 コード管理 可視化 Azure AI Studio
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Prompt Flowでできること - フロー、特にLLMとのインタラクションを簡単にデバッグ可 - フローを評価し、品質とパフォーマンスのメトリクスを計算 - テストと評価をCI/CDシステムに統合し、フローの品質を保証 - 選択したサービスプラットフォームにフローをデプロイするか、アプリ
のコードベースに簡単に統合可能 - Azure AI Studioにてチームで共同作業可能 https://microsoft.github.io/promptflow/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
LLMアプリケーションの開発 開発方法 • Azure AI Studio • VS Code 拡張機能
• CLI
LLMアプリケーションの開発 Azure AI Studio Azure AI Studio上で ツール(プロンプトフ ロー)を使う
LLMアプリケーションの開発 VS Code 拡張機能 Azure AI Studio同様に可視 化しながらローカル環境で 開発できる
LLMアプリケーションの開発 CLI フローの初期化、バリデーション、テスト、バッチ実行、トレース、 ビルド、エンドポイント作成 $ pf $ pfazure pfコマンドのAzure AI版
https://microsoft.github.io/promptflow/reference/pf-command-reference.html#
LLMアプリケーションの開発 バリアント(プロンプトチューニング) →生産性を高める、生成の質を高める、比較を容易にする
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
評価、トレース 評価 1. 自動評価 2. カスタム評価
評価、トレース 自動評価 Microsoftが監修したメトリックを使うことがで きる • パフォーマンスと品質メトリック ◦ 根拠性、関連性、コヒーレンス、流暢 性、GPTの類似性、F1 •
リスクと安全メトリック ◦ 自傷行為、悪意のある不公平、暴力的、 性的な内容、コンテンツ
評価、トレース カスタム評価 入力値、システムメトリックを出力 評価用フローを作成 (例: 固有表現抽出) ground truthとのマッチ度
評価、トレース トレース OpenTelemetry仕様に従っ て、LLMコールや関数、 LangChainやAutoGenなどの LLMフレームワークをトレー スできるトレース機能を提供 from promptflow.tracing import
start_trace start_trace() https://microsoft.github.io/promptflow/how-to-guides/tracing/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
デプロイ - CLIで開発サーバーデプロイ - Docker - オンラインエンドポイント - 関数として実行
デプロイ - CLIで開発サーバーデプロイ - Docker $ pf flow serve --source
<flow-folder> --port 8080 --host localhost $ curl http://localhost:8080/score --data ‘{“hoge”: … $ pf flow build --source <flow-folder> --output <output-dir> --format docker
デプロイ - オンラインデプロイメント Azure上に仮想マシンとインスタンス数を設定し簡単にデプロイ可能 - 関数として実行(既存アプリと統合し易い) from promptflow.client import load_flow
f = load_flow(“./example_flow/”) data = json.loads(request.get_data()) result_dict = f(**data)
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
まとめ Prompt FLowはLLMアプリケーションの開発を支える多様な機能 があり、開発サイクルを合理化している 是非、使ってみてください!