Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ライセンスの呪いを祓う 続編 / License-free Deep Learning for...
Search
Henry Cui
January 27, 2023
Programming
0
220
ライセンスの呪いを祓う 続編 / License-free Deep Learning for Images
Henry Cui
January 27, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
190
Direct Preference Optimization
zchenry
0
370
Diffusion Model with Perceptual Loss
zchenry
0
390
レンズの下のLLM / LLM under the Lens
zchenry
0
180
Go with the Prompt Flow
zchenry
0
160
Mojo Dojo
zchenry
0
200
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
560
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
240
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
120
Other Decks in Programming
See All in Programming
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
420
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
100
Porting a visionOS App to Android XR
akkeylab
0
290
ニーリーにおけるプロダクトエンジニア
nealle
0
780
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
21
3.9k
C++20 射影変換
faithandbrave
0
570
PostgreSQLのRow Level SecurityをPHPのORMで扱う Eloquent vs Doctrine #phpcon #track2
77web
2
500
初学者でも今すぐできる、Claude Codeの生産性を10倍上げるTips
s4yuba
16
10k
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
180
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
5
680
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
220
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
640
Featured
See All Featured
Writing Fast Ruby
sferik
628
62k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
How to train your dragon (web standard)
notwaldorf
94
6.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
500
Agile that works and the tools we love
rasmusluckow
329
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Site-Speed That Sticks
csswizardry
10
680
Automating Front-end Workflow
addyosmani
1370
200k
Bash Introduction
62gerente
614
210k
Transcript
ライセンスの呪いを祓う 続編 機械学習の社会実装勉強会第19回 Henry 2023/1/28
目標とモチベーション ▪ 目標 • 機械的に・自動的に生成された画像のみで、汎用的な画像認識モデ ルを学習したい ▪ 機械学習の社会実装的なモチベーション • pre-trained
model・foundation model を利用したいときに、それに関 わるライセンス問題をクリアにしたい • 自分で大規模画像データセットを集める手間を省きたい ▪ 機械学習の研究的なモチベーション • 機械学習モデルの学習プロセスの解明 • 自然画像ではない画像でどこまで特徴量抽出ができるかの解明 2
前回の内容 ▪ 数式に従って生成された画像のみを使って、汎用的な特徴量 抽出能力を持った画像認識モデルを学習できる • Fractal • Contour 3
今日の内容 ▪ 同じ著者グループによる2本の論文紹介 • Learning to See by Looking at
Noise, Baradad et al., NeurIPS 2021 • Procedural Image Programs for Representation Learning, Baradad et al., NuerIPS 2022 ▪ 先週との違い • 幅広い生成法 • ラベルなしで対照学習 • 主にカラフルな画像を使う 4
Baradad et al. 2021 5
Baradad et al. 2021 ▪ 5種類の生成法を考える a. 法則に従う ▪ FractalやCG等
b. Dead Leavesモデル ▪ ランダムのシェープで覆う c. 統計的画像生成 ▪ Spectrum:フーリエ変換がリアル画像のフーリエ変換と似る ▪ Wavelet-marginal model:wavelet係数が制約を満たす d. GANs ▪ StyleGAN:初期化したモデルで生成やそれに統計的制約をつける e. 特徴量可視化 ▪ ResNet50を使う 6
全体的な性能 ▪ AlexNetモデルとInfoNCE損失 ▪ 一般的にStyleGANで生成された画像を使ったほうが性能が よい 7
意味のある特徴量抽出ができる 8
Ablation Study ▪ 以下の2点が大事 • 統計的に自然画像に似ている • 程よい多様性を持つ 9
Baradad et al. 2022 ▪ Baradad et al. 2021の弱点 •
良いモデルを学習するには、生成プロセスを丁寧に調整する必要があ る • 生成手順が複雑で、手間がかかる ▪ 提案法 • OpenGLの短いコードを大量に集める • GPUで高性能並列で高速に画像生成する • 深く制御せずに学習する 10
Baradad et al. 2022 11
データ収集 ▪ 2つのソースから • Twitter:コードが短くて、より複雑な画像を生成 • Shadertoy:コードが長くて、よりシンプルな画像を生成 ▪ 2つのデータセットに •
Shaders1k:Twitterのみ • Shaders21k:TwitterとShadertoy両方 ▪ クラスラベルも • 同じコードでシードを変えて生成 12
分類性能 ▪ 教師付き分類(CE)、教師付き対照学習(SupCon)、教師なし 対照学習(SimCLR) ▪ log関数に従う 13
大規模対照学習 14
Shaderで性能良くするために 15 ▪ 生成画像間の多様性 ▪ 複数のShaderでは、多様性を持つ部分集合を選べば良い