Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ことのはの力で画像の異常検知 / Anomaly Detection by Language
Search
Henry Cui
September 30, 2023
Technology
0
560
ことのはの力で画像の異常検知 / Anomaly Detection by Language
Henry Cui
September 30, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
190
Direct Preference Optimization
zchenry
0
370
Diffusion Model with Perceptual Loss
zchenry
0
390
レンズの下のLLM / LLM under the Lens
zchenry
0
180
Go with the Prompt Flow
zchenry
0
160
Mojo Dojo
zchenry
0
200
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
240
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
120
{{guidance}}のガイダンス / Guidance of guidance
zchenry
0
160
Other Decks in Technology
See All in Technology
AI専用のリンターを作る #yumemi_patch
bengo4com
5
4.3k
敢えて生成AIを使わないマネジメント業務
kzkmaeda
2
440
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
1
110
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
27k
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
120
事業成長の裏側:エンジニア組織と開発生産性の進化 / 20250703 Rinto Ikenoue
shift_evolve
PRO
2
21k
Tokyo_reInforce_2025_recap_iam_access_analyzer
hiashisan
0
180
第4回Snowflake 金融ユーザー会 Snowflake summit recap
tamaoki
1
280
20250705 Headlamp: 專注可擴展性的 Kubernetes 用戶界面
pichuang
0
270
KubeCon + CloudNativeCon Japan 2025 Recap by CA
ponkio_o
PRO
0
300
CDKTFについてざっくり理解する!!~CloudFormationからCDKTFへ変換するツールも作ってみた~
masakiokuda
1
130
KiCadでPad on Viaの基板作ってみた
iotengineer22
0
300
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
BBQ
matthewcrist
89
9.7k
Balancing Empowerment & Direction
lara
1
430
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
The Language of Interfaces
destraynor
158
25k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Building an army of robots
kneath
306
45k
Fireside Chat
paigeccino
37
3.5k
Transcript
ことのはの力で画像の異常検知 機械学習の社会実装勉強会第27回 Henry 2023/9/30
論文の紹介 ▪ 最近の基盤モデル(言語モデルと画像モデル)の発達により、その知識で 画像異常検知を行うモチベーション • まだ実用化まで距離あるが、技術的に面白い方法性 ▪ AnomalyGPT: Detecting Industrial
Anomalies using Large Vision-Language Models • https://github.com/CASIA-IVA-Lab/AnomalyGPT • 実装も公開されているのでありがたい 2
論文のモチベーション ▪ Vision付きLLM(MiniGPT-4やLLaVA)は一般物体について認 識できるが、ドメインごとの専門知識や局所の細部についての 知識がない ▪ 従来の異常検知手法は異常スコアを出せるが、人間が閾値を 設定する必要がある ▪ そこで、両者の良いところを結合したLarge
Vision-Language Model(LVLM)を用いた手法を提案 3
提案手法のイメージ 4
既存法との比較 ▪ 以下の側面で提案法は優れている • Few-shot learning:少量データで学習できる • Anomaly score:異常スコアを出力できる •
Anomaly localization:異常箇所を特定できる • Anomaly judegment:異常あり・無しを判断できる • Multi-turn dialogue:インタラクティブにやり取りできる 5
提案法の構成 6
Image Decoderの入力テキスト ▪ 前ページ構成図の上半分 ▪ テキストは以下のようなものを使う 7
学習データの準備 ▪ データ拡張に使われる技術で異常画像を生成する 8
学習データの準備 ▪ 学習用対話データは以下のように準備する 9
定量的な評価 ▪ 特に少数の学習データに強い 10
定性的な評価 11
定性的な評価 12
まとめ ▪ LVLM基盤モデルを用いた画像異常検知 • これからの発展が期待 13