Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning and Feedback
Search
Agata Naomichi
September 26, 2018
Programming
1
1.5k
Machine Learning and Feedback
Agata Naomichi
September 26, 2018
Tweet
Share
More Decks by Agata Naomichi
See All by Agata Naomichi
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
1
580
医療系スタートアップが経験した 認知負荷問題の症状分析と処方箋 チーム分割による認知負荷の軽減 / Cognitive Load Busters
agatan
2
540
専門性の高い領域をいかに開発し、 テストするか / How to test and develop complicated systems with Domain Experts!
agatan
3
830
Henry のサーバーサイドアーキテクチャ 狙いと課題 2022.08.25 / Server-Side Architecture at Henry, Inc.
agatan
3
5.6k
The Web Conference 2020 - Participation Report
agatan
1
710
○○2vec 再考
agatan
1
4.6k
Improving "People You May Know" on Directed Social Graph
agatan
4
2.7k
Recommendation systems on microservices - productivity & reproducibility
agatan
0
910
Mint: Language Level Support for SPAs
agatan
3
1.8k
Other Decks in Programming
See All in Programming
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
200
Claude Code on the Web を超える!? Codex Cloud の実践テク5選
sunagaku
0
550
AIを駆使して新しい技術を効率的に理解する方法
nogu66
1
630
「10分以内に機能を消せる状態」 の実現のためにやっていること
togishima
1
430
GraalVM Native Image トラブルシューティング機能の最新状況(2025年版)
ntt_dsol_java
0
140
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
350
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
280
flutter_kaigi_2025.pdf
kyoheig3
1
330
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
37
12k
AI 時代だからこそ抑えたい「価値のある」PHP ユニットテストを書く技術 #phpconfuk / phpcon-fukuoka-2025
shogogg
1
490
Functional Calisthenics in Kotlin: Kotlinで「関数型エクササイズ」を実践しよう
lagenorhynque
0
130
AI駆動開発ライフサイクル(AI-DLC)のホワイトペーパーを解説
swxhariu5
0
970
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Rails Girls Zürich Keynote
gr2m
95
14k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
930
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Automating Front-end Workflow
addyosmani
1371
200k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Become a Pro
speakerdeck
PRO
29
5.6k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Designing for Performance
lara
610
69k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Transcript
ユーザフィードバックと機械学習 Machine Learning Casual Talks #6
Naomichi Agata Software engineer at Wantedly, Inc. Server side +
Machine learning @ Wantedly People GitHub Twitter @agatan @agatan_
サービスにおける機械学習システムには ユーザフィードバックが重要
フィードバック • ユーザからのフィードバック ◦ レビューやお問い合わせだけではなく、 「ふつうにサービスを使うなかでの行動」から得られる ◦ e.g. 「検索結果をクリックした」「購入せずに戻った」「誤情報を訂正した」 •
ユーザへのフィードバック ◦ より良いサービスを提供する ◦ e.g. 「あなたへのおすすめ」「全体の精度が向上する」
何を持ってそのモデルを「良い」と判断するか 機械学習をサービスに活用するためには 1. モデル自体の精度(オフラインで測れる精度) 2. KPI / ユーザ体験への影響(オンラインでしか測れない精度) の 2
面から「良さ」を判断する必要がある ユーザ体験への影響は「ユーザからのフィードバック」でしか測れない
サービスの成長とモデルの成長 • サービスが大きくなるにつれてできることは増えていくはず ◦ e.g. パーソナライズ • フィードバックループを繰り返して改善していきたい 、というのは機械学習も一緒 良い機械学習によってサービスの成長を加速する
→ データが増える → 精度があがる and/or できることが増える → 成長を加速 → …
理想 良い体験を実現するほど、使ってもらえる ↑↓ 使ってもらうほど、改善がすすむ 使う 改善 より良い体験の提供
現実 • どの程度フィードバックを得られるかは、問題とサービスの性質に依存する ◦ たとえば、推薦はフィードバックを得やすい • 「サービスの拡大とともに使える情報が増える」ことは期待できない場合もある ◦ 学習データにするには壁がある ▪
より高度な annotation 作業が必要, ノイズが多い, … • 機械学習システムだけ成長に置いていかれるわけにはいかない
どんな対応ができるか
前提... • フィードバックを逃さないログ基盤などはとても重要 ◦ 「なにかがおかしい」を察知できないと改善の余地がない ◦ 継続的に評価できないと新しいことに挑戦できなくなる • フィードバックを受けやすい UX
設計も重要になってくる(?) ◦ 予測が間違っているときにそれを伝えられる ◦ 予測が正しかったときにそれを伝えられる ◦ 機械学習エンジニアも UX 設計に参加する必要がある
半教師あり学習として解く • 「少量の教師ありデータ + 大量の教師なしデータ」 • 教師なしでもできることを組み合わせたシステムにするのが一番うまくいった ◦ たとえば、word embedding
layer を教師なしデータで事前学習しておく
データの分布に注目する • annotate されていないデータでも、現実のデータの分布を反映している • 活用できていなかったデータも、細かく分析することで使えるようになる(こともある) • 分布さえわかればできることもある ◦ たとえば、bi-gram
の出現頻度を見ながら sequence 全体での尤度が最大になるように decode する ◦ たとえば、出現頻度の多いパターンにはアドホックにルールベースで対処する ▪ e.g. 高い頻度・確率で「m」が「nn」に訂正されている • より現実に近い data augmentation ができる ◦ データの分布から教師データを作る
ノイズを許容する • ノイズを許容してでも大きなデータで学習したほうが良い場合もある ◦ とはいえ単純につっこんでもうまくいかない(はず) • 地道に分析してノイズを取り除くのが(可能なら)一番よさそう • 教師データのノイズに耐性を持つようなモデルも提案されている
まとめ • サービスの成長にあわせてモデルも改善したい ◦ モデル改善 → サービス向上 → 使ってもらえる →
改善 → … のループが回せると幸せ ◦ 問題・領域によっては、モデルの改善に直接使えるデータは集まらない • どうやってモデルの改善を進めるか ◦ そもそも UX としてユーザフィードバックが得られる構造になっているか? ◦ 半教師あり的に扱う ◦ ひたすら分析 + パターンを見出して改善する