Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2025年度春学期 統計学 第7回 データの関係を知る(2)ー回帰と決定係数 (2025. 5...
Search
Akira Asano
PRO
May 13, 2025
Education
0
2
2025年度春学期 統計学 第7回 データの関係を知る(2)ー回帰と決定係数 (2025. 5. 22)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2025s/STAT/
Akira Asano
PRO
May 13, 2025
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2025年度春学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2025. 5. 15)
akiraasano
PRO
0
3
2025年度春学期 統計学 第5回 分布をまとめるー記述統計量(平均・分散など) (2025. 5. 8)
akiraasano
PRO
0
83
2025年度春学期 統計学 第4回 データを「分布」で見る (2025. 5. 1)
akiraasano
PRO
0
74
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義後配付用) (2025. 4. 17)
akiraasano
PRO
0
38
2025年度春学期 統計学 第3回 クロス集計と感度・特異度,データの可視化 (2025. 4. 24)
akiraasano
PRO
0
86
2025年度春学期 統計学 講義の進め方と成績評価について (2025. 4. 10)
akiraasano
PRO
0
120
2025年度春学期 統計学 第1回 イントロダクション (2025. 4. 10)
akiraasano
PRO
0
130
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
110
2024年度秋学期 統計学 第15回 分布についての仮説を検証する - 仮説検定(2) (2025. 1. 15)
akiraasano
PRO
0
99
Other Decks in Education
See All in Education
IMU-00 Pi
kanaya
0
340
郷土教育モデル事業(香川県小豆島町).pdf
bandg
0
140
SARA Annual Report 2024-25
sara2023
1
130
Dashboards - Lecture 11 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
諸外国の理科カリキュラムにおけるビッグアイデアの構造比較
arumakan
0
220
Training Alchemy: Converting ordinary training into memorable experiences
tmiket
1
120
Pen-based Interaction - Lecture 4 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
技術文章を書くための執筆技術と実践法(パラグラフライティング)
hisashiishihara
17
5.8k
ThingLink
matleenalaakso
28
4k
Information Architectures - Lecture 2 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.5k
今も熱いもの!魂を揺さぶる戦士の儀式:マオリ族のハカ
shubox
0
150
Data Processing and Visualisation Frameworks - Lecture 6 - Information Visualisation (4019538FNR)
signer
PRO
1
2.3k
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
76
9.4k
Designing for Performance
lara
608
69k
Typedesign – Prime Four
hannesfritz
41
2.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.3k
The Cost Of JavaScript in 2023
addyosmani
49
7.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Facilitating Awesome Meetings
lara
54
6.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Six Lessons from altMBA
skipperchong
28
3.8k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Transcript
関西大学総合情報学部 浅野 晃 統計学 2025年度春学期 第7回 データの関係を知る(2) ― 回帰と決定係数
回帰分析とは🤔🤔
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 回帰分析とは 3 多変量データがあるとき ある変量の変化を他の変量の変化で [説明]する方法
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 回帰分析とは 3 多変量データがあるとき ある変量の変化を他の変量の変化で [説明]する方法 説明?🤔🤔
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 回帰分析とは 4 緯度と気温のデータを例にとると 相関分析 「緯度が上がると,気温が下がる」という 傾向があることを見いだす 回帰分析 「緯度から気温が計算で求められる」と考える
緯度が1度上がると,気温が◯℃下がる 緯度と気温について,「どちらからどちらへ」という方向は考えない
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 回帰分析とは 5 緯度が上がるから気温が下がると考える 緯度が1度上がると,気温が◯℃下がる 各都市の気温は,緯度から計算で求められるという[モデル]を考える 統計学では, 気温の分散は,緯度によって[説明]されるという ※「モデルを考える」のは,科学の考え方そのものといえます。
そして,そのモデルでどの程度説明がつくかを考える ※前回の「(学年を無視すれば)成績が体格から推測できる」というのも, 「成績が体格から計算で求められるというモデル」としてはあり。 (学年を無視することが妥当かどうかは別)
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 説明変数・被説明変数 6 [説明変数] % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温は緯度によって説明される(というモデル) [被説明変数]
線形単回帰🤔🤔
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか?
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか?
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか? 散布図上で直線の関係がある, というモデルを考える
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 9 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 散布図上で直線の関係がある x y y = a + bx という式で表される関係 [線形単回帰] という
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 10 直線の式は
y = ax + b と習ったような🤔🤔 どちらも正解です y = ax + b y = a + bx 昇冪(しょうべき)順 降冪(こうべき)順
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は 説明変数を付け加えて いくことができる 気温 緯度 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は +b2 x2 説明変数を付け加えて いくことができる 気温 緯度 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は +b2 x2 説明変数を付け加えて いくことができる 気温 緯度 標高 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は +b2 x2 +b3 x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は +b2 x2 +b3 x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は +b2 x2 +b3 x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる 説明変数が2つ以上ある場合を[重回帰]という
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 y = a + bx ? 11 y
= ax + b y = ax 昇冪(しょうべき)順は 降冪(こうべき)順は +b2 x2 +b3 x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 統計学では,昇冪順を使うことが多い 何次関数かすぐわかる 説明変数が2つ以上ある場合を[重回帰]という
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係 や (パラメータ)はどうやって求める? a b
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y y = a + bx
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y y = a + bx のとき x = xi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx のとき x = xi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx 差 yi −(a + bxi ) のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi 差が最小になるように を決める a, b
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx 差 yi −(a + bxi ) のとき x = xi モデルによれば y = a + bxi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 14 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi −(a + bxi )
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての について,差の合計が最小になるように を決める xi a, b
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi −(a + bxi )
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての について,差の合計が最小になるように を決める xi a, b
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi −(a + bxi ) の2乗
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての について,差の合計が最小になるように を決める xi a, b
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi −(a + bxi ) L = n i=1 {yi − (a + bxi)}2 の2乗
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての について,差の合計が最小になるように を決める xi a, b
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi −(a + bxi ) L = n i=1 {yi − (a + bxi)}2 が最小になる を求める a, b の2乗
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 が最小になる を求める L a, b 15 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2)
付録に収録してある数式の展開は,試験の範囲には含みません。 今から,「偏微分による方法」の考え方 (数式そのものではなくて考え方)を説明します。
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b a b L ★ a b L
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b a b L ★ a b L だけの関数と考えて微分 a
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b a b L ★ a b L だけの関数と考えて微分 a
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b a b L ★ a b L だけの関数と考えて微分 a だけの関数と考えて微分 b
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b a b L ★ a b L だけの関数と考えて微分 a だけの関数と考えて微分 b
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi −
(a + bxi)}2 が最小になる を求める a, b の2次関数 a, b a b L ★ a b L だけの関数と考えて微分 a だけの関数と考えて微分 b 微分?😵😵
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a 微分は,傾きを求める計算
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a 微分は,傾きを求める計算 下り(–)
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a 微分は,傾きを求める計算 下り(–) 上り(+)
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0 b についても同じ,底では微分=0
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a b
L だけの関数と考えて微分 a 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0 b についても同じ,底では微分=0 底で が最小だから, これらから を求める L a, b
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2)
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy σ2
x a = ¯ y − b¯ x
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy σ2
x a = ¯ y − b¯ x の共分散 x, y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy σ2
x a = ¯ y − b¯ x の共分散 x, y の分散 x
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy σ2
x a = ¯ y − b¯ x の共分散 x, y の分散 x の平均 y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy σ2
x a = ¯ y − b¯ x の共分散 x, y の分散 x の平均 x の平均 y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 最小二乗法 19 を最小にしたので[最小二乗法] b = σxy σ2 x
a = ¯ y − b¯ x [回帰係数] L = n i=1 {yi − (a + bxi)}2 y = a + bx [回帰方程式]あるいは[回帰直線]
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで 20 x y ¯ x % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ¯ y y = a + bx 帰係数 a = ¯ y − b¯ x から y − ¯ y = b(x − ¯ x) 回帰直線は を通る (¯ x, ¯ y)
線形単回帰の結果を使う💡💡
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 縦軸の位置( )のとき の値は x = 25 y % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 縦軸の位置( )のとき の値は x = 25 y % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 縦軸の位置( )のとき の値は x = 25 y y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 縦軸の位置( )のとき の値は x = 25 y y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 縦軸の位置( )のとき の値は x = 25 y y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度を ,気温を として回帰直線 を求めると x y
y = a + bx b = − 0.850, a = 44.60 縦軸の位置( )のとき の値は x = 25 y y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x y = a + bx より x = y − a b 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 を代入すると y = 5 % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 を代入すると y = 5 % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 を代入すると y = 5 % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は を通る x = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 を代入すると y = 5 % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は を通る x = 46.59 直 線 が ひ け る 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 を代入すると y = 5 % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は を通る y = 23.35 横軸の位置( )のとき の値は y = 5 x y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は を通る x = 46.59 直 線 が ひ け る 計算結果と図が合っていることを たしかめましょう 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 緯度を ,気温を として回帰直線 x y y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a + bx
に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 緯度を ,気温を として回帰直線 x y y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a + bx
に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度を ,気温を として回帰直線 x y y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a + bx
に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度を ,気温を として回帰直線 x y y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a + bx
に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 推定14.85℃ 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度を ,気温を として回帰直線 x y y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a + bx
に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 推定14.85℃ 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度を ,気温を として回帰直線 x y y = a + bx を求めると b = − 0.850, a = 44.60 → 計算結果と図が合っている ことをたしかめましょう
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a + bx
に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a + bx
に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 34.68度 推定15.12℃
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a + bx
に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 推定15.12℃
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a + bx
に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 実測16.2℃ 推定15.12℃
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a + bx
に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 実測16.2℃ 推定15.12℃ 推定値と実測値に 差がある →次の話へ
決定係数と「説明」🤔🤔
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差 27 が求められて,回帰直線が確定したとき a, b % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi に対する,回帰直線による の推定値 xi y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差 27 が求められて,回帰直線が確定したとき a, b % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi ˆ yi = a + bxi に対する,回帰直線による の推定値 xi y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差 27 が求められて,回帰直線が確定したとき a, b % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 回帰直線が確定しても残っている, 推定値と実測値の差 ˆ yi = a + bxi に対する,回帰直線による の推定値 xi y ˆ yi yi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差 27 が求められて,回帰直線が確定したとき a, b % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 回帰直線が確定しても残っている, 推定値と実測値の差 ˆ yi = a + bxi に対する,回帰直線による の推定値 xi y ˆ yi yi この差を[残差]という di
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi 残差について,次の関係がなりたつ(付録3)
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi d2 i
= (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3)
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi d2 i
= (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi d2 i
= (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi d2 i
= (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi d2 i
= (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数 相関係数の2乗 [決定係数]
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って を推定したときの, 推定によって表現できなかった部分 yi d2 i
= (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数 相関係数の2乗 [決定係数] 🤔🤔…
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 − r2
xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 − r2
xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 − r2
xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n の偏差の2乗の平均 = の分散 y y 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n の偏差の2乗の平均 = の分散 y y 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n の偏差の2乗の平均 = の分散 y y 決定係数
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 の偏差の2乗の平均 ( の分散) y y x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 の偏差の2乗の平均 ( の分散) y y もともと はこんなに ばらついていたが, y x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 の偏差の2乗の平均 ( の分散) y y もともと はこんなに ばらついていたが, y 回帰直線から見ると x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 の偏差の2乗の平均 ( の分散) y y もともと はこんなに ばらついていたが, y 回帰直線から見ると x y y di = yi – yi [残差] y i y i – y [偏差] y i x i ばらつきはこんなに減った
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 のもともとのばらつき y 決定係数 =
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 のもともとのばらつき y 決定係数 = 回帰直線によるばらつきの縮小の度合い
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy =
d2 i /n (yi − ¯ y)2/n 決定係数 のもともとのばらつき y 決定係数 = 回帰直線によるばらつきの縮小の度合い = 回帰直線によって,ばらつきの何%が「説明」できたか
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 = 0
のとき x y もとの の分散 y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 = 0
のとき x y もとの の分散 y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 = 0
のとき 回帰直線に対する のばらつき y x y もとの の分散 y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 = 0
のとき 回帰直線に対する のばらつき y x y もとの の分散 y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 = 0
のとき 回帰直線に対する のばらつき y x y もとの の分散 y 回帰直線に対する のばらつきは y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 = 0
のとき 回帰直線に対する のばらつき y x y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散と y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 まったく変わらない 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する のばらつき y x y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散と y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 まったく変わらない 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する のばらつき y x y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散と y 「回帰直線のまわりに散らばっている」と 説明したところで, 全く説明になっていない
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数 ≒
0.5 のとき もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数 ≒
0.5 のとき もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数 ≒
0.5 のとき 回帰直線に対する のばらつき y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数 ≒
0.5 のとき 回帰直線に対する のばらつき y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数 ≒
0.5 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数 ≒
0.5 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 に比べて半分になっている 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 に比べて半分になっている 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散 y 「回帰直線のまわりに散らばっている」と 説明したことで, もとの の分散の半分を説明した y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数 ≒
0.8 のとき もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数 ≒
0.8 のとき もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数 ≒
0.8 のとき 回帰直線に対する のばらつき y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数 ≒
0.8 のとき 回帰直線に対する のばらつき y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数 ≒
0.8 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数 ≒
0.8 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 に比べて20%に減っている 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散 y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 に比べて20%に減っている 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する のばらつき y もとの の分散 y 回帰直線に対する のばらつきは y もとの の分散 y 「回帰直線のまわりに散らばっている」と 説明したことで, もとの の分散の80%を説明した y x y
ところで,前回の講義で 言いかけていたことですが💬💬💦💦
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 x y
x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 回帰直線ではもとの の分散の
25%しか説明できていない y x y x y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 回帰直線ではもとの の分散の
25%しか説明できていない y x y x y 回帰直線でもとの の分散の 50%を説明している y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 こちらのほうが,中くらいの相関関係 (分散の説明という意味では)
回帰直線ではもとの の分散の 25%しか説明できていない y x y x y 回帰直線でもとの の分散の 50%を説明している y
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定 ✢
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定 ✢
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定 平均から離れた個体がある
と安定する ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定 平均から離れた個体がある
と安定する ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 注意すべき例 38 x y こういう分布だと
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 注意すべき例 38 全体で見ると弱い正の相関に見えるが x y こういう分布だと
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 注意すべき例 38 全体で見ると弱い正の相関に見えるが x y こういう分布だと 群ごとに見ると負の相関
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 注意すべき例 38 相関係数や回帰直線は どんなデータであっても計算 「できてしまう」ことに注意 全体で見ると弱い正の相関に見えるが x y
こういう分布だと 群ごとに見ると負の相関
38 2025年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 注意すべき例 38 相関係数や回帰直線は どんなデータであっても計算 「できてしまう」ことに注意 全体で見ると弱い正の相関に見えるが 得られた回帰直線は, それが意味のあるものかどうか,
よく考えましょう。 x y こういう分布だと 群ごとに見ると負の相関