Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
為藤アキラ
February 06, 2025
Technology
0
96
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
0
86
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
250
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
61
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
120
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
180
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
200
Amazon Bedrock Agents (基本編)
akiratameto
0
160
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
60
Other Decks in Technology
See All in Technology
From Live Coding to Vibe Coding with Firebase Studio
firebasethailand
1
160
QAを早期に巻き込む”って どうやるの? モヤモヤから抜け出す実践知
moritamasami
2
180
SAE J1939シミュレーション環境構築
daikiokazaki
0
160
「AI駆動開発」のボトルネック『言語化』を効率化するには
taniiicom
1
150
AI Ready API ─ AI時代に求められるAPI設計とは?/ AI-Ready API - Designing MCP and APIs in the AI Era
yokawasa
21
5.8k
2025-07-25 NOT A HOTEL TECH TALK ━ スマートホーム開発の最前線 ━ SOFTWARE
wakinchan
0
140
東京海上日動におけるセキュアな開発プロセスの取り組み
miyabit
0
150
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
240
AI エンジニアの立場からみた、AI コーディング時代の開発の品質向上の取り組みと妄想
soh9834
7
400
エンジニアリングマネージャー“お悩み相談”パネルセッション
ar_tama
1
680
P2P ではじめる WebRTC のつまづきどころ
tnoho
1
220
メモ整理が苦手な者による頑張らないObsidian活用術
optim
0
130
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Bash Introduction
62gerente
613
210k
Code Review Best Practice
trishagee
69
19k
Agile that works and the tools we love
rasmusluckow
329
21k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
GraphQLとの向き合い方2022年版
quramy
49
14k
Gamification - CAS2011
davidbonilla
81
5.4k
How STYLIGHT went responsive
nonsquared
100
5.6k
Faster Mobile Websites
deanohume
308
31k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!