Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
為藤アキラ
February 06, 2025
Technology
0
110
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
1
87
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
250
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
63
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
120
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
190
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
210
Amazon Bedrock Agents (基本編)
akiratameto
0
170
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
65
Other Decks in Technology
See All in Technology
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
220
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.7k
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
1.1k
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
160
Kiro と Q Dev で 同じゲームを作らせてみた
r3_yamauchi
PRO
1
110
AIと描く、未来のBacklog 〜プロジェクト管理の次の10年を想像し、創造するセッション〜
hrm_o25
0
110
[kickflow]20250319_少人数チームでのAutify活用
otouhujej
0
110
AIに頼りすぎない新人育成術
cuebic9bic
3
320
Amazon Qで2Dゲームを作成してみた
siromi
0
150
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
2
880
Exadata Database Service on Dedicated Infrastructure セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
0
280
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
7
1.2k
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Code Reviewing Like a Champion
maltzj
524
40k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
How GitHub (no longer) Works
holman
314
140k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!