Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock Agents (基本編)
Search
為藤アキラ
January 22, 2025
Technology
0
180
Amazon Bedrock Agents (基本編)
為藤アキラ
January 22, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
1
92
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
260
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
69
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
120
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
akiratameto
0
120
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
200
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
210
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
67
Other Decks in Technology
See All in Technology
クラウドセキュリティを支える技術と運用の最前線 / Cutting-edge Technologies and Operations Supporting Cloud Security
yuj1osm
2
280
AI エージェントとはそもそも何か? - 技術背景から Amazon Bedrock AgentCore での実装まで- / AI Agent Unicorn Day 2025
hariby
4
1.2k
シークレット管理だけじゃない!HashiCorp Vault でデータ暗号化をしよう / Beyond Secret Management! Let's Encrypt Data with HashiCorp Vault
nnstt1
3
220
AIエージェントの活用に重要な「MCP (Model Context Protocol)」とは何か
masayamoriofficial
0
300
ここ一年のCCoEとしてのAWSコスト最適化を振り返る / CCoE AWS Cost Optimization devio2025
masahirokawahara
1
1.5k
Kiroと学ぶコンテキストエンジニアリング
oikon48
6
9.1k
Obsidian応用活用術
onikun94
1
400
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
0
210
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
9
4.3k
AWSで始める実践Dagster入門
kitagawaz
0
330
エニグモ_会社紹介資料(エンジニア職種向け).pdf
enigmo_hr
0
2.2k
なぜSaaSがMCPサーバーをサービス提供するのか?
sansantech
PRO
8
2.5k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
A designer walks into a library…
pauljervisheath
207
24k
Six Lessons from altMBA
skipperchong
28
4k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Why Our Code Smells
bkeepers
PRO
339
57k
4 Signs Your Business is Dying
shpigford
184
22k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Thoughts on Productivity
jonyablonski
70
4.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Making Projects Easy
brettharned
117
6.4k
Transcript
AWS活用 Amazon Bedrock #1 Amazon Bedrock Agents 基本編 株式会社BLUEISH 代表取締役CEO兼CTO
為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・AWS歴12年 ・直近のAIプロジェクト
・画像を中心とした機械学習とLLM のハイブリッドのアーキテクト 自己紹介
基本的な1日のスケジュール
今回の基礎編でのゴール ・AI Agentを知ること ・Amazon Bedrockを知ること
今回の基礎編でのゴール ・AI Agentを知ること ・Amazon Bedrockを知ること ・迷わずにBedrock Agentsで作業が出来ること
AI Agentとは?
自立型の生成AI?
AI Agentとは? 出典: 日経クロステック「有能人材「AIエージェント」とは 宿泊予約や商談資料作成」より 特定のタスクを自動的かつ自律的に実行するシステム
AI Agentとは? AI Agentは、環境と対話し、データを収集し、そのデータを使用して自己決定 タスクを実行して、事前に決められた目標を達成するためのソフトウェアプログ ラムです。 目標は人間が設定しますが、その目標を達成するために実行する必要がある最 適なアクションは AI エージェントが独自に選択します。
AI Agentを6段階で考える
AI Agentを6段階で考える ・L0 (No AI) AIによる学習・推論なし。単なるツール+行動のみ ・L1 (Rule-based
AI) あらかじめ設定したルール(if-then)に基づいて動くAI ・L2 (IL/RL-based AI) 模倣学習(IL)や強化学習(RL)などを活用し、試行錯誤を通じて推論・意思決定をするAI ・L3 (LLM-based AI) 大規模言語モデル(LLM)を中核に据え、言語理解や高度な推論が可能 ・L4 L3を踏まえたうえで自律学習と汎化能力を付与し、新しい状況に柔軟に適応するAI ・L5 L4をさらに拡張し感情や性格(パーソナリティ)を持ち複数エージェント同士で協調・連携できるAI
AI Agentを6段階で考える ・L0 (No AI) AIによる学習・推論なし。単なるツール+行動のみ ・L2 (IL/RL-based
AI) 模倣学習(IL)や強化学習(RL)などを活用し、試行錯誤を通じて推論・意思決定をするAI ・L3 (LLM-based AI) 大規模言語モデル(LLM)を中核に据え、言語理解や高度な推論が可能 ・L4 L3を踏まえたうえで自律学習と汎化能力を付与し、新しい状況に柔軟に適応するAI ・L5 L4をさらに拡張し感情や性格(パーソナリティ)を持ち複数エージェント同士で協調・連携できるAI ・L1 (Rule-based AI) あらかじめ設定したルール(if-then)に基づいて動くAI
AI Agentに向いているもの 出典:AWS Black BeltOnline Seminar より
AI Agentに向いているもの 出典:AWS Black BeltOnline Seminar より
Amazon Bedrock Agentsの歴史 2023年9月28日 Amazon Bedrockが正式リリース 2023年11月28日 Amazon Bedrock Agentsが一般リリース
2024年4月5日 Amazon Bedrock AgentsがCloudFormationに対応 2024年4月23日 ユーザーからの必要なパラメータで を定義 2024年4月23日 機能がリリース 〜 Action Group Return of Control
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より 全体の処理の流れのイメージ
Amazon Bedrock Agentsでの流れ 対話形式での処理の流れ
Amazon Bedrock Agentsでの流れ Input Output 前処理 (1) オーケストレーション (n) ターン
後処理 (1) ターンからの処理の流れ 基盤モデルの呼び出し
デモンストレーション
Amazon Bedrock Agentsの作成 (TOP)
Amazon Bedrock Agentsの作成 (エージェント TOP)
Amazon Bedrock Agentsの作成 (エージェント TOP) マルチエージェントは今回はやらない
Amazon Bedrock Agentsの作成 (エージェント 詳細)
Amazon Bedrock Agentsの作成 (モデルを選択)
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より 全体の処理の流れのイメージ
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より 全体の処理の流れのイメージ
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsでの流れ 対話形式での処理の流れ
Amazon Bedrock Agentsでの流れ 対話形式での処理の流れ セッションを保持
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より 全体の処理の流れのイメージ
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より 全体の処理の流れのイメージ
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsでの流れ Input Output 前処理 (1) オーケストレーション (n) ターン
後処理 (1) ターンからの処理の流れ 基盤モデルの呼び出し
Amazon Bedrock Agentsでの流れ Input Output 前処理 (1) オーケストレーション (n) ターン
後処理 (1) ターンからの処理の流れ 基盤モデルの呼び出し
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsでの流れ Input Output 前処理 (1) オーケストレーション (n) ターン
後処理 (1) ターンからの処理の流れ 基盤モデルの呼び出し
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より
Amazon Bedrock Agentsの作成 (全体説明)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成) Return of Control
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Return of control AWS Lambda 関数の使用をスキップして、エージェントを呼び出すアプリケーションに制御を返すことができます。 このようにして、アプリケーションは、必要なネットワークおよびセキュリティ設定をLambda関数と統合することな く、AWS外のシステムと直接統合したり、Amazon Virtual Private
Cloud(Amazon VPC)でホストされている内部エン ドポイントを呼び出したりできます。 Amazon Bedrock Agentsの作成 (アクショングループの作成)
Return of control AWS Lambda 関数の使用をスキップして、エージェントを呼び出すアプリケーションに制御を返すことができます。 このようにして、アプリケーションは、必要なネットワークおよびセキュリティ設定をLambda関数と統合することな く、AWS外のシステムと直接統合したり、Amazon Virtual Private
Cloud(Amazon VPC)でホストされている内部エン ドポイントを呼び出したりできます。 Lambda関数の使用をスキップ出来る。 Lambda関数を呼び出す方式と違い、AWS外のシステムと直接統合できる。 Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成 (アクショングループの作成)
Amazon Bedrock Agentsの作成完了
Amazon Bedrock Agentsのテスト (Lambda)
Amazon Bedrock Agentsのテスト (Lambda)
Amazon Bedrock Agentsのテスト (Lambda)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsのテスト (Return of Control)
Amazon Bedrock Agentsでの流れ 出典:AWS Black BeltOnline Seminar より 全体の処理の流れのイメージ
Thank You!