$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Comprehensive Tutorial of Level Set Method
Search
Liam Jongsu Kim
June 04, 2013
Science
0
720
Comprehensive Tutorial of Level Set Method
Liam Jongsu Kim
June 04, 2013
Tweet
Share
More Decks by Liam Jongsu Kim
See All by Liam Jongsu Kim
Dive into Triton Internals
appleparan
0
560
Other Decks in Science
See All in Science
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
20k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
データマイニング - グラフデータと経路
trycycle
PRO
1
250
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
110
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
120
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
110
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
140
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
370
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
GraphQLとの向き合い方2022年版
quramy
50
14k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
KATA
mclloyd
PRO
32
15k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Building an army of robots
kneath
306
46k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Speed Design
sergeychernyshev
33
1.4k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Transcript
Comprehensive Guide of Level Set Method with Fluid Mechanics Jongsu
Kim Department of Computational Science and Engineering Yonsei University 1
Yonsei University 2/00 Contents • Motivation • Level Set Method
• Level Set Reinitialization • Numerical Schemes • Conclusion
Yonsei University 3/00 Multiphase Phase Flow •
Yonsei University 4/00 • • • • • • •
• Multiphase Phase Flow
Yonsei University 5/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 6/00 Modification of Navier-Stokes Equation • = −
+ 2 + = − + 2 + ⋅ = 0 Ω What equation at the interface?
Yonsei University 7/00
Yonsei University 8/00 CSF Model • • 1 − 2
+ = 1 − 2 + 1 − 2 + = 21 1 − 22 2 2 + 2 − 1 + 1 = •
Yonsei University 9/00 CSF Model • = () • ()
() = [] () = 1 ( 1) 2 ( 2) < > = 1 + 2 /2 ( ℎ ) = 2 − 1
Yonsei University 10/00 What We Have Done • = −
+ 2 + , = 0 = − + 2 + , = 0 ⋅ = 0 Ω 2 − = − + ul = ug , x ∈ Γ Three equations.. Should we solve these equation separately? And how we know the interface?
Yonsei University 11/00 VOF Method • • • • =
1 ( 2) (0 < < 1) + ⋅ = 0
Yonsei University 12/00 VOF Method • • • • •
Yonsei University 13/00 Level Set Method = =0 = ⋅
=0 , = < 0, ( ) > 0, ( ) = 0 ( ℎ )
Yonsei University 14/00 = , > 0 , ≤ 0
+ ⋅ = 0 , = < 0, ( ) > 0, ( ) = 0 ( ℎ ) Level Set Method
Yonsei University 15/00 + ⋅ = 0 Γ , ,
(, ) , = , , , , , = ( , , , ) ( , , , , ) (, ) Γ , , , , ≡ + + = + + Level Set Method
Yonsei University 16/00 , = < 0, ( ) >
0, ( ) = 0 ( ℎ ) () = , ( ) , ( ) + /2, () () = , ( ) , ( ) + /2, () Level Set Method
Yonsei University 17/00 = − + ⋅ 2 − +
Level Set Method () () = + − , = + − () What We Have Done () = 0, < 0 1 2 , = 0 1, > 0 However, we still have a discontinuity … + ⋅ = 0
Yonsei University 18/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 19/00 → () Heaviside Function () = 0,
< − 1 2 1 + + 1 sin / , || ≤ 1, > +
Yonsei University 20/00 Distance Function • • 2 |∇| ()
= 0, < − 1 2 1 + + 1 sin / , || ≤ 1, > + • ∇ = 1 ≤ • ∇ = 1 ∈ Ω = 0 ∈ Γ The distance function = The level set function?
Yonsei University 21/00 Level Set Reinitialization = (1 − ∇
) , 0 = () sign = −1, < 0 0, = 0 1, > 0 ∇ = 1 ∈ Ω = 0 ∈ Γ |∇| = 1 |∇| = 1 ≤ Do we solve this equation each iteration?
Yonsei University 22/00 Level Set Reinitialization = (1 − ∇
) + ⋅ ∇ = = ∇ |∇| •
Yonsei University 23/00 Level Set Reinitialization •
Yonsei University 24/00 Level Set Reinitialization What We Have Done
= − + ⋅ 2 − + + ⋅ = 0 () = 0, < − 1 2 1 + + 1 sin / , || ≤ 1, > + + ⋅ ∇ = Are we done?
Yonsei University 25/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 26/00 Back to Equation = − + ⋅
2 − + + ⋅ = 0
Yonsei University 27/00 Back to Equation = Σ | +1
− | +1 ≤ ≤
Yonsei University 28/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 29/00 Advantange/Disadvantage • • • Γ , =
0 • •
Yonsei University 30/00 Summary of Algorithm (, 0) ( +
⋅ ∇ = 0) ( ⋅ ∇) = +1 (1 − ∇ )
Yonsei University 31/00 Reference • • • • •
Yonsei University 32/00 Reference (Image) • • • • •
• • • • •
Yonsei University 33/00 Reference (Image) • •