Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IBM Quantum Challenge Spring 2023 Lab5解説
Search
Ayumu-walker
July 16, 2023
Technology
0
220
IBM Quantum Challenge Spring 2023 Lab5解説
社内勉強会で発表した、IBM Quantum Challenge Spring 2023 の最終問題で、量子回路を改良した内容です。
Ayumu-walker
July 16, 2023
Tweet
Share
More Decks by Ayumu-walker
See All by Ayumu-walker
円周率の日スペシャル 量子コンピューターと円周率の話
ayumu0118
0
870
IBM Cloud Festa 2020 GUIから始める量子コンピューター超入門
ayumu0118
1
820
量子コンピューター超入門ハンズオン 補足資料 線形代数
ayumu0118
1
1.5k
量子コンピューター超入門ハンズオン 2020/04/24
ayumu0118
1
1.5k
Other Decks in Technology
See All in Technology
Javaコミュニティの歩き方 ~参加から貢献まで、すべて教えます~
tabatad
0
130
LINEヤフー バックエンド組織・体制の紹介
lycorptech_jp
PRO
0
730
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
5
3.2k
アジャイル社内普及ご近所さんマップを作ろう / Let's create an agile neighborhood map
psj59129
1
130
米軍Platform One / Black Pearlに学ぶ極限環境DevSecOps
jyoshise
2
410
[CV勉強会@関東 ICCV2025] WoTE: End-to-End Driving with Online Trajectory Evaluation via BEV World Model
shinkyoto
0
270
Axon Frameworkのイベントストアを独自拡張した話
zozotech
PRO
0
140
[mercari GEARS 2025] Building Foundation for Mercari’s Global Expansion
mercari
PRO
1
130
手を動かしながら学ぶデータモデリング - 論理設計から物理設計まで / Data modeling
soudai
PRO
24
5.7k
自己的售票系統自己做!
eddie
0
460
ABEJA FIRST GUIDE for Software Engineers
abeja
0
3.2k
Service Monitoring Platformについて
lycorptech_jp
PRO
0
160
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
7k
Building Applications with DynamoDB
mza
96
6.8k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Automating Front-end Workflow
addyosmani
1371
200k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
24
1.6k
Transcript
Quantum Tokyo Qt IBM Quantum Challenge Spring 2023 Lab5解説 Ayumu
Shiraishi (ISE, Data Science Lab) Qiskit Advocate
Quantum Tokyo アジェンダ ⚫ Lab5の概要 ⚫ Exercise1 ⚫ Exercise2 ⚫
Exercise3 ⚫ Depthを改良する ⚫ 最後に
Quantum Tokyo Lab5概要
Quantum Tokyo 余談)Sherbrooke
Quantum Tokyo GHZ状態とは
Quantum Tokyo GHZ状態とは 全ての量子ビットが|0>もしくは|1>がちょうど1/2の確率で観測される状態 | ۧ 0 + | ۧ
1 2 | ۧ 00 + | ۧ 11 2 | ۧ 000 + | ۧ 111 2 | ۧ 00 ⋯ 0 + | ۧ 11 ⋯ 1 2 = | ۧ 0 ⊗𝑛 + | ۧ 1 ⊗𝑛 2 𝑛 = 1: 𝑛 = 2: 𝑛 = 3: 一般の𝑛: ←1量子ビットの単なる重ね合わせ ←EPR状態 ←(歴史的に最初に定義された)GHZ状態 ←一般化されたGHZ状態
Quantum Tokyo ibm_sherbrooke
Quantum Tokyo Exercise1
Quantum Tokyo Exercise1 このexerciseのGraderを通すだけなら、量子H/Wデバイスのレイアウトを無視して、 GHZ状態をシンプルに生成することでも可能 Depth = 127
Quantum Tokyo Exercise2
Quantum Tokyo Exercise2 GHZビット(”odd”) スタビライザー ビット(“even”)
Quantum Tokyo Exercise2 このexerciseもGraderを通すだけなら、レイアウトを無視して、GHZ量子ビットのい ずれかから、スタビライザー量子ビットにCNOTを通すだけで良い 最も単純には量子ビット0をコントロールとする Depth = 73
Quantum Tokyo 実機で動かすための準備(Step2続き)
Quantum Tokyo 実機で動かす(Step3)
Quantum Tokyo 実機で動かす(Step3)
Quantum Tokyo Exercise3
Quantum Tokyo Exercise3 1回ごとの出力結果をget_memory関数で取得することが前提となる
Quantum Tokyo Exercise3 |0>か|1>の状態が多い方を観測時に決定した状態とみなすと、少ない方の数をエラー 数としてカウントする 配列の右側から小さいビット 番号になることに注意し、 GHZビットの’1’の数を数える 最後に平均を取る ‘0’と’1’の少ない方を
エラーとみなして選定
Quantum Tokyo Exercise3 研究者の皆さん、 教えてください!
Quantum Tokyo ボーナス:エラー訂正への道 ごめんなさい、ここから先はできていません。。。
Quantum Tokyo 回路全体の更なる改良 実機で動かす上ではエラーを減らして計算精度を高い状態にするためには、Depthを 減らすことが重要になってくるので、その観点で改良を試みる • GHZ状態をどう効率的作るか(Exercise1の改良) → hard •
Stabilizer状態の生成をどう効率的に作るか(Exercise2の改良)→ easy(先にこち らから)
Quantum Tokyo Exercise2の改良 物理的に隣合う量子ビットで交互にGHZ状態とスタビライザー状態が折りたたまれて いるので、GHZ状態を残す量子ビットを制御に、隣合うスタビライザー用の量子ビッ トをターゲットにすることで少ないdepthで構成が可能 例えば0->1、18->19、・・・・
Quantum Tokyo Exercise2の改良
Quantum Tokyo Exercise1の改良 まだレイアウトを無視した上で、もう少し効率的な方法は樹形図的にGHZ状態を波及 させていく方法がある
Quantum Tokyo Exercise1のさらなる改良 着想: • 端から始めるのではなく、真ん中から始めてGHZ状態を波及させていてくのが速 いのでは???
Quantum Tokyo Transpiled Depthは何故増えるのか① • 直接接続が無い量子ビット同士に対して、多量子ビットゲート(例:CNOT)を使 う場合には、接続できている量子ビット間を経由して、より多くのDepthを使うこ とで同一の処理となるゲートを再構成しなければならない Transpile Sherbrookeの量
子ビット0から2 をCNOTする
Quantum Tokyo Depth=1(63にHadamardをかける) H
Quantum Tokyo Depth=2 (63を制御に64にCNOT) +
Quantum Tokyo Depth=3 (63->64、62->72それぞれ同時に CNOT) + +
Quantum Tokyo Depth=4 (63->64、62->72それぞれ同時に CNOT) + + +
Quantum Tokyo Depth=5 ~ + + + +
Quantum Tokyo クリティカルパスに如何に早く届けるかを意識 する
Quantum Tokyo 白石が書いた最小Depthコード (Depth=18) 実は124に向か うルートが最後 の改良ポイント になる
Quantum Tokyo 描画してみたんですが・・・
Quantum Tokyo 最終的なTranspiled Depth しかし、人によっては似たような回路を作っているけども、depthがこれよりも長く なってしまっているケースがある → 疑問
Quantum Tokyo Transpiled Depthは何故増えるのか② • 直接接続がある量子ビット間でも、直接CNOT可能な“向き”が存在し、コントロー ルとターゲットをどちらにするかで追加のゲートを必要とする場合がある • 以下はibm_sherbrookeの量子ビット0番と1番の場合
Quantum Tokyo Transpiled Depthは何故増えるのか②
Quantum Tokyo Depth=52の人もいる? おそらく、この“向き”も考慮しているのではないか?
Quantum Tokyo 参考情報 https://soon-teh.github.io/blog/2023/quantum-challenge-spring-ghz/
Quantum Tokyo 最後に 近い内にQiitaにでもコチラの解説記事を書きます。