Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IBM Quantum Challenge Spring 2023 Lab5解説
Search
Ayumu-walker
July 16, 2023
Technology
0
180
IBM Quantum Challenge Spring 2023 Lab5解説
社内勉強会で発表した、IBM Quantum Challenge Spring 2023 の最終問題で、量子回路を改良した内容です。
Ayumu-walker
July 16, 2023
Tweet
Share
More Decks by Ayumu-walker
See All by Ayumu-walker
円周率の日スペシャル 量子コンピューターと円周率の話
ayumu0118
0
760
IBM Cloud Festa 2020 GUIから始める量子コンピューター超入門
ayumu0118
1
770
量子コンピューター超入門ハンズオン 補足資料 線形代数
ayumu0118
1
1.4k
量子コンピューター超入門ハンズオン 2020/04/24
ayumu0118
1
1.3k
Other Decks in Technology
See All in Technology
JAWS DAYS 2025 アーキテクチャ道場 事前説明会 / JAWS DAYS 2025 briefing document
naospon
0
2.7k
どちらかだけじゃもったいないかも? ECSとEKSを適材適所で併用するメリット、運用課題とそれらの対応について
tk3fftk
2
240
手を動かしてレベルアップしよう!
maruto
0
240
急成長する企業で作った、エンジニアが輝ける制度/ 20250227 Rinto Ikenoue
shift_evolve
0
190
30→150人のエンジニア組織拡大に伴うアジャイル文化を醸成する役割と取り組みの変化
nagata03
0
220
AIエージェント開発のノウハウと課題
pharma_x_tech
8
4.4k
Amazon Athenaから利用時のGlueのIcebergテーブルのメンテナンスについて
nayuts
0
110
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
210
AWSではじめる Web APIテスト実践ガイド / A practical guide to testing Web APIs on AWS
yokawasa
8
750
IAMのマニアックな話2025
nrinetcom
PRO
6
1.4k
困難を「一般解」で解く
fujiwara3
7
1.6k
1行のコードから社会課題の解決へ: EMの探究、事業・技術・組織を紡ぐ実践知 / EM Conf 2025
9ma3r
12
4.4k
Featured
See All Featured
Faster Mobile Websites
deanohume
306
31k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
580
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
260
Product Roadmaps are Hard
iamctodd
PRO
51
11k
Speed Design
sergeychernyshev
27
810
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
The Cult of Friendly URLs
andyhume
78
6.2k
Thoughts on Productivity
jonyablonski
69
4.5k
Transcript
Quantum Tokyo Qt IBM Quantum Challenge Spring 2023 Lab5解説 Ayumu
Shiraishi (ISE, Data Science Lab) Qiskit Advocate
Quantum Tokyo アジェンダ ⚫ Lab5の概要 ⚫ Exercise1 ⚫ Exercise2 ⚫
Exercise3 ⚫ Depthを改良する ⚫ 最後に
Quantum Tokyo Lab5概要
Quantum Tokyo 余談)Sherbrooke
Quantum Tokyo GHZ状態とは
Quantum Tokyo GHZ状態とは 全ての量子ビットが|0>もしくは|1>がちょうど1/2の確率で観測される状態 | ۧ 0 + | ۧ
1 2 | ۧ 00 + | ۧ 11 2 | ۧ 000 + | ۧ 111 2 | ۧ 00 ⋯ 0 + | ۧ 11 ⋯ 1 2 = | ۧ 0 ⊗𝑛 + | ۧ 1 ⊗𝑛 2 𝑛 = 1: 𝑛 = 2: 𝑛 = 3: 一般の𝑛: ←1量子ビットの単なる重ね合わせ ←EPR状態 ←(歴史的に最初に定義された)GHZ状態 ←一般化されたGHZ状態
Quantum Tokyo ibm_sherbrooke
Quantum Tokyo Exercise1
Quantum Tokyo Exercise1 このexerciseのGraderを通すだけなら、量子H/Wデバイスのレイアウトを無視して、 GHZ状態をシンプルに生成することでも可能 Depth = 127
Quantum Tokyo Exercise2
Quantum Tokyo Exercise2 GHZビット(”odd”) スタビライザー ビット(“even”)
Quantum Tokyo Exercise2 このexerciseもGraderを通すだけなら、レイアウトを無視して、GHZ量子ビットのい ずれかから、スタビライザー量子ビットにCNOTを通すだけで良い 最も単純には量子ビット0をコントロールとする Depth = 73
Quantum Tokyo 実機で動かすための準備(Step2続き)
Quantum Tokyo 実機で動かす(Step3)
Quantum Tokyo 実機で動かす(Step3)
Quantum Tokyo Exercise3
Quantum Tokyo Exercise3 1回ごとの出力結果をget_memory関数で取得することが前提となる
Quantum Tokyo Exercise3 |0>か|1>の状態が多い方を観測時に決定した状態とみなすと、少ない方の数をエラー 数としてカウントする 配列の右側から小さいビット 番号になることに注意し、 GHZビットの’1’の数を数える 最後に平均を取る ‘0’と’1’の少ない方を
エラーとみなして選定
Quantum Tokyo Exercise3 研究者の皆さん、 教えてください!
Quantum Tokyo ボーナス:エラー訂正への道 ごめんなさい、ここから先はできていません。。。
Quantum Tokyo 回路全体の更なる改良 実機で動かす上ではエラーを減らして計算精度を高い状態にするためには、Depthを 減らすことが重要になってくるので、その観点で改良を試みる • GHZ状態をどう効率的作るか(Exercise1の改良) → hard •
Stabilizer状態の生成をどう効率的に作るか(Exercise2の改良)→ easy(先にこち らから)
Quantum Tokyo Exercise2の改良 物理的に隣合う量子ビットで交互にGHZ状態とスタビライザー状態が折りたたまれて いるので、GHZ状態を残す量子ビットを制御に、隣合うスタビライザー用の量子ビッ トをターゲットにすることで少ないdepthで構成が可能 例えば0->1、18->19、・・・・
Quantum Tokyo Exercise2の改良
Quantum Tokyo Exercise1の改良 まだレイアウトを無視した上で、もう少し効率的な方法は樹形図的にGHZ状態を波及 させていく方法がある
Quantum Tokyo Exercise1のさらなる改良 着想: • 端から始めるのではなく、真ん中から始めてGHZ状態を波及させていてくのが速 いのでは???
Quantum Tokyo Transpiled Depthは何故増えるのか① • 直接接続が無い量子ビット同士に対して、多量子ビットゲート(例:CNOT)を使 う場合には、接続できている量子ビット間を経由して、より多くのDepthを使うこ とで同一の処理となるゲートを再構成しなければならない Transpile Sherbrookeの量
子ビット0から2 をCNOTする
Quantum Tokyo Depth=1(63にHadamardをかける) H
Quantum Tokyo Depth=2 (63を制御に64にCNOT) +
Quantum Tokyo Depth=3 (63->64、62->72それぞれ同時に CNOT) + +
Quantum Tokyo Depth=4 (63->64、62->72それぞれ同時に CNOT) + + +
Quantum Tokyo Depth=5 ~ + + + +
Quantum Tokyo クリティカルパスに如何に早く届けるかを意識 する
Quantum Tokyo 白石が書いた最小Depthコード (Depth=18) 実は124に向か うルートが最後 の改良ポイント になる
Quantum Tokyo 描画してみたんですが・・・
Quantum Tokyo 最終的なTranspiled Depth しかし、人によっては似たような回路を作っているけども、depthがこれよりも長く なってしまっているケースがある → 疑問
Quantum Tokyo Transpiled Depthは何故増えるのか② • 直接接続がある量子ビット間でも、直接CNOT可能な“向き”が存在し、コントロー ルとターゲットをどちらにするかで追加のゲートを必要とする場合がある • 以下はibm_sherbrookeの量子ビット0番と1番の場合
Quantum Tokyo Transpiled Depthは何故増えるのか②
Quantum Tokyo Depth=52の人もいる? おそらく、この“向き”も考慮しているのではないか?
Quantum Tokyo 参考情報 https://soon-teh.github.io/blog/2023/quantum-challenge-spring-ghz/
Quantum Tokyo 最後に 近い内にQiitaにでもコチラの解説記事を書きます。