Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実務で使えるOrange Data Miningの便利な機能
Search
ぶんちん
June 01, 2023
Technology
0
1.3k
実務で使えるOrange Data Miningの便利な機能
ぶんちん
June 01, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
65
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
59
統計知識と実務のギャップ
bunnchinn3
0
71
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
70
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
75
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
78
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
78
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
120
良書紹介02_Head First データ解析
bunnchinn3
0
70
Other Decks in Technology
See All in Technology
RayでPHPのデバッグをちょっと快適にする
muno92
PRO
0
200
User Story Mapping + Inclusive Team
kawaguti
PRO
3
470
30→150人のエンジニア組織拡大に伴うアジャイル文化を醸成する役割と取り組みの変化
nagata03
0
360
DeepSeekとは?何がいいの? - Databricksと学ぶDeepSeek! 〜これからのLLMに備えよ!〜
taka_aki
1
180
OCI Success Journey OCIの何が評価されてる?疑問に答える事例セミナー(2025年2月実施)
oracle4engineer
PRO
2
220
Apache Iceberg Case Study in LY Corporation
lycorptech_jp
PRO
0
380
生成AI×財務経理:PoCで挑むSlack AI Bot開発と現場巻き込みのリアル
pohdccoe
1
820
クラウド関連のインシデントケースを収集して見えてきたもの
lhazy
9
2k
Qiita Organizationを導入したら、アウトプッターが爆増して会社がちょっと有名になった件
minorun365
PRO
1
350
マルチアカウント環境における組織ポリシーについて まとめてみる
nrinetcom
PRO
2
110
Introduction to OpenSearch Project - Search Engineering Tech Talk 2025 Winter
tkykenmt
2
230
Amazon Athenaから利用時のGlueのIcebergテーブルのメンテナンスについて
nayuts
0
120
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Building Your Own Lightsaber
phodgson
104
6.2k
Designing for Performance
lara
605
68k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Speed Design
sergeychernyshev
28
820
Statistics for Hackers
jakevdp
797
220k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
RailsConf 2023
tenderlove
29
1k
Designing Experiences People Love
moore
140
23k
Transcript
実務で使える Orange Data Miningの便利な機能 ぶんちん 2023年6月1日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
Orange Data Mining ビジュアルプログラミング的にデータ分析や機械学習モデル作成・評価が可能 公式HPから入手すれば無料で使用可能 UIが素晴らしい 初心者は勉強に使おう!
専門家は手抜き・教育に使おう! 3 https://orangedatamining.com/ GUI操作で分析・モデル作成が可能 基本的な使い方は前回紹介 スライド&動画公開してます
便利な機能紹介 Orangeには様々な便利な機能が実装されています。 今回はその中から、ちょっと見ただけでは気づきそうにないけど便利なものを中心に 紹介します。 4 • 入門者向け:誰もが使える便利な機能 • 中級者向け:機械学習についてある知識がある人向けの機能 •
アドオン :特定の領域に特化した追加機能
入門者向け 基本統計量の一括出力 散布図の便利機能×2 5
入門者向け:基本統計量の一括出力 6 ← colorを指定するとグラフに反映される 基本統計量を表示したいデータと接続するだけ
入門者向け:散布図の便利機能1 7 散布図を表示したいデータと接続、 縦軸と横軸の項目を指定するだけ これだけだと普通すぎて面白くないですよね?
入門者向け:散布図の便利機能1 8 表形式で 表示するwidget マウスで範囲指定 選択したデータを抽出 散布図どころかグラフのwidgeに限らず、 全てのデータ可視化機能からGUIでデータ選択が可能
入門者向け:散布図の便利機能1 9 widgetをつなぐ線を ダブルクリック! 接続を変えると 選択有無のフラグ情報を取得可能 この機能を使ってフィルターかければ、 マウス操作で異常値の除去などが可能 即時、他の分析結果に反映できる! 注意:恣意的なデータ選択はやめよう
入門者向け:散布図の便利機能2 10 散布図を表示したいデータと接続、縦軸と横軸の項目を指定するだけ これだけだと普通すぎて面白くないですよね? ①目的変数を設定 → ← ②押す
入門者向け:散布図の便利機能2 11 ※イイ感じ順 の具体的な内容 knn(k=10)で全ての特徴量の組み合わせでモデル作成・評価 精度(オレンジ色のバー)の良い順に表示する ③押す ↓ 目的変数をきれいに説明する 縦軸と横軸の組み合わせを
イイ感じ順※に表示 カテゴリ変数や相関係数には表れない相関を扱える 非専門家向けのデータ可視化に便利!
中級者向け モデル作成のデータの前処理 異常データの除去(異常検知) 12
中級者向け:モデル作成のデータ前処理 前回の資料、説明をシンプルにするため、適切に機械学習モデルを作成するため に恣意的なことをしていました。 13 特徴量の正規化しなくても問題ない 決定木系のアルゴリズムを選択 正規化をはじめ、便利なデータ前処理機能を説明します
中級者向け:モデル作成のデータ前処理 14 モデル作成前に実施したい前処理を 順に加えて設定するだけでOK! 適用アルゴリズムの左側に Preprocessのwidgetを接続
中級者向け:異常データの除去(異常検知) 15 異常検知アルゴリズムを使い、 一定比率の異常値を簡単に除去可能 前述のwidgetの接続を変えれば、 逆に異常データの抽出も可能 適用可能なアルゴリズム • One Class
SVM • Covariance Estimator • Local Outlier Factor • Isolation Forest
アドオン ad-on(追加機能)の導入方法 特徴量重要度の算出 16
アドオン:ad-on(追加機能)の導入方法 17 導入したいアドオンにチェック 必要に応じて導入してください あまり導入しすぎると起動が重くなるので注意 例えば • 機械学習モデルの説明 • 画像処理
• 自然言語 • 時系列分析 • 生存分析 • ネットワーク分析 など 様々な領域の手法に対応
アドオン:特徴量重要度の算出 18 Explainのad-on 補足)Permutation Importanceを使ってモデルがどの特徴量から学習したかを定量化する https://www.datarobot.com/jp/blog/permutation-importance/ 機械学習モデルの特徴量重要度を Permutation Importanceで評価
ご清聴、ありがとうございました。 他にも話したいネタがたくさんあります 超初心者向け機械学習の考え方 組織の基礎レベル向上 ノーコード分析の紹介 データ分析プロジェクトの進め方ネタ
あまり知られていない良書紹介 など 今後もLTでいろんなお話をしていきたいです。 どれにするかtwitterでアンケートを考えているので、投票してもらえると嬉しいです。 詳しい内容については、個別に対応するのでお気軽にお声がけください。 Twitter:@bunnchinn3 19