Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
製造業における品質不良の要因分析01_ゴール設定
Search
ぶんちん
July 10, 2024
Business
0
73
製造業における品質不良の要因分析01_ゴール設定
ぶんちん
July 10, 2024
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
17
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
43
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
42
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
41
良書紹介02_Head First データ解析
bunnchinn3
0
34
良書紹介01_生命科学・生物工学のための間違いから学ぶ実践統計解析
bunnchinn3
0
51
OJT指導のはじめかた
bunnchinn3
0
140
自律機械知能の行動観察
bunnchinn3
0
110
ぶんちん流データサイエンス教育のコンセプト
bunnchinn3
0
170
Other Decks in Business
See All in Business
パーキング・チケット 発給設備のキャッシュレス化
tokyo_metropolitan_gov_digital_hr
0
280
採用資料
daichihayashi
0
270
【Otegami】「月経期間のパートナーとのすれ違いを軽減する」
hinalin
0
680
IT 未経験者をVue.js で開発できる IT コンサルタントに育てあげる秘訣/ Future's New Employee Training
yut0naga1_fa
0
310
Arches 会社説明資料/ HR Deck
arches0501
0
7.5k
エンジニア向けオープンワーク会社紹介資料 / company profile
openwork
1
17k
会社案内資料
mkengineering
1
160
kubell COMPASS Ver 1.0.0
kubell_hr
0
3.8k
【metimo】「『似合う』を楽しもう。」
hinalin
0
610
5 Things Every L&D Pro Should Steal From Marketing
trainlikeamarketer
0
420
ノーコード・ローコストで進めるDX
tokyo_metropolitan_gov_digital_hr
0
410
HireRoo Culture Deck(日本語)
kkosukeee
1
25k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
The Language of Interfaces
destraynor
154
24k
Why Our Code Smells
bkeepers
PRO
334
57k
What's new in Ruby 2.0
geeforr
343
31k
GitHub's CSS Performance
jonrohan
1030
460k
A Tale of Four Properties
chriscoyier
156
23k
BBQ
matthewcrist
85
9.3k
Embracing the Ebb and Flow
colly
84
4.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
RailsConf 2023
tenderlove
29
900
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Transcript
製造業における品質不良の要因分析 その1 ぶんちん 2024年7月11日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 e ラ ー ニ
ン グ の イ ラ ス ト ( 男 性 ) 困 っ た 顔 で 働 く 会 社 員 の イ ラ ス ト ( 男 性 ) 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、 成果が増えるのでは 特に非専門家向けのDS教育 2
注意!! 多くの案件を根拠にしているものの、あくまで私の経験則 因果探索とかの技術の話ではありません。対照実験を組めるので優先度低いです。 3 泥臭い The 重厚長大 製造業
私はスマートな業界ではなく、 が前提のお話です。
製造業でよくある光景 4 品質不良が多いから、 何でもいいから データ見て原因調査して え? いきなりそんなこと言われても とりあえずやってみるか
実際にやってみると 5 それっぽいのは出たけど、 はっきりした原因はわからない こんな結果がでましたが、 どうですか? これが本当に原因なの? ちゃんと全部データ見た? <結果>次のパターン •
文句言われながら、得られた結果を信じて進める • 終わりないエンドレスの調査プロジェクトに代わる
認識しておくべき前提 きちんと原因をつかめるとは限らない 原因を示すことができるデータ項目がない 観測値のバラツキが大きすぎる データで表現できない設備の老朽化が原因のことも そもそも改善ができないことが原因であることも。。。 6 でもビジネスマンとして成果を出さなければならない
指示を出す側と受け手との認識ズレ 7 品質不良が多いから、 何でもいいから データ見て原因調査して 何でもいいからビジネス的成果出して 品質不良が多いから、 得られる成果が大きいでしょ? <要求内容> ×:品質不良の原因を見つけろ
◦:ビジネス的成果につながるアクションを出せ
ゴールを定義しなおそう <目的の見直し> 品質不良の原因を見つける → ビジネス成果獲得のためのアクションを具体化 8 ポイント!! データ分析でできることは無数にあるが、 取れるアクションは多くない つまり、
➢選択可能なアクションで成果獲得の可能性を示す ➢選択可能なアクションからは成果獲得の見込みがないことを示す (+別アプローチの成果獲得のプランの提示) のいずれかができればOK 原因が見つかっても 獲得効果より大きなコストが 必要なら不採用
最初にやるべきこと(事前準備) 改善効果による経済効果の概算 実施可能なアクションの選定に重要 実施可能なアクションの把握 調査すべき内容とその方法の検討に重要
全体的なデータの確認・現状把握 認識と現状の操業が一致しているか、どの程度乖離しているか把握して課題を具体 化するのに重要 ここができてから、具体的な調査方法を設計し、プロジェクトを進めていく 9 詳細や続きは次回! 優秀な相手方の担当者がつくと これだけで解決することも
まとめ 品質要因の分析プロジェクト、実は原因を見つけることが目的ではない 経済効果を出すためのアクションを提示することが目的 ➢ 選択可能なアクションで成果獲得の可能性を示す ➢ 選択可能なアクションからは成果獲得の見込みがないことを示す (+別アプローチの成果獲得のプランの提示)
事前準備を進める ◆ 改善効果による経済効果の概算 ◆ 実施可能なアクションの把握 ◆ 全体的なデータの確認・現状把握 10 詳細や続きは次回!