Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSとGCPのいいとこどりでつくる分析基盤のきほん
Search
chie8842
October 09, 2017
Technology
5
1.7k
AWSとGCPのいいとこどりでつくる分析基盤のきほん
DevfestTokyo2017の登壇資料です。 #DevfestTokyo #DevfestTokyo2017 #GDG #DevFest17
chie8842
October 09, 2017
Tweet
Share
More Decks by chie8842
See All by chie8842
MongoDB Atlas:モダンなアプリ開発を支えるデータプラットフォームのご紹介
chie8842
0
23
MongoDB Vectorsearchではじめるカスタマイズ可能な生成AIアプリ開発
chie8842
0
23
MongoDB Atlas Search のご紹介
chie8842
2
1.8k
MongoDB Atlas Vectorsearchではじめる生成AIアプリ開発
chie8842
3
1.8k
AWS GlueとAWS Lake Formationではじめるデータマネジメント
chie8842
0
1.1k
Distributed Processing in Python
chie8842
2
780
クックパッドにおける推薦(と検索)の取り組み
chie8842
20
8.1k
Understanding distributed processing in Python
chie8842
2
2.1k
Performance Tuning Tips of TensorFlow Inference
chie8842
1
760
Other Decks in Technology
See All in Technology
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
380
re:Inventに行くまでにやっておきたいこと
nagisa53
0
750
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
390
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
130
AIとの協業で実現!レガシーコードをKotlinらしく生まれ変わらせる実践ガイド
zozotech
PRO
1
150
猫でもわかるAmazon Q Developer CLI 解体新書
kentapapa
1
160
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
14
11k
AIを使ってテストを楽にする
kworkdev
PRO
0
290
CLIPでマルチモーダル画像検索 →とても良い
wm3
1
630
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
280
AI機能プロジェクト炎上の 3つのしくじりと学び
nakawai
0
160
Observability — Extending Into Incident Response
nari_ex
1
590
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Gamification - CAS2011
davidbonilla
81
5.5k
Navigating Team Friction
lara
190
15k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
A better future with KSS
kneath
239
18k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
We Have a Design System, Now What?
morganepeng
53
7.8k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Being A Developer After 40
akosma
91
590k
Agile that works and the tools we love
rasmusluckow
331
21k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Transcript
"84ͱ($1ͷ͍͍ͱ͜ͲΓͰͭ͘Δ ੳج൫ͷ͖΄Μ !DIJF DIJFIBZBTIJEB 1
ࣗݾհ $IJF)BZBTIJEB 5XJUUFS!DIJF (JU)VCDIJF 3FUUZ*OD 4PGUXBSF&OHJOFFS
($1"84ػցֶश1ZUIPO4DBMB$MPKVSF%#WJN মϐΞϊςχεεϊϘ 2
Ϋϥυϑϧ׆༻Ͱ େنੳج൫ΛظؒͰ ߏஙͨ͠ࣄྫΛڞ༗͠·͢ɻ 3
ࠓ͢ൣғ ج൫ϨΠϠͷ ΞϓϦϨΠϠͷ ਐΊํ ͦͷͷͷ ͜͜ͷΛ͠·͢ɻ 4
ੳج൫ߏஙͷഎܠ • 3FUUZೖࣾॳ マネージャ わたし(⼊社初⽇、 肩書き:データ サイエンティスト) ͱΓ͋͑ͣɺੳج൫ͭͬͯ͘ɻ ϲ݄Ͱʂ ͑ɺੳج൫ʁ
5
ͦͦੳج൫ͱʁ • σʔλΛੵɾ׆༻͢ΔͨΊͷج൫ ੳج൫ ! ࢪࡦͷධՁ ΞυςΫ Ϩίϝϯυ 6
ͱͱ͋ͬͨੳج൫ͷ՝ᶃ ˙%8)ͷςʔϒϧઃܭͷ ྫ ΫΤϦ࣮ߦ࣌ʹաେͳαʔό Ϧιʔε͕ඞཁ ετϨʔδ༰ྔඡഭ ੳͮ͠Β͍ ʢΞυϗοΫੳͷʹ ෳࡶͳਖ਼نදݱநग़ʣ •
ෆཁͳϩά͕ϩάશମͷׂ • దͳσʔλܕ͕ΘΕ͍ͯͳ͍ • KTPOΦϒδΣΫτ͕ςΩετܗࣜͰೖ͍ͬͯΔ 7
ͱͱ͋ͬͨੳج൫ͷ՝ᶄ ˙Ϛελσʔλผͷ%#ʹ͋Δ • Ϛελσʔλͱಥ߹ͯ͠ੳ͍ͨ͠߹ ผͷڥʹσʔλΛҠ͢ඞཁ͕͋Δ • KPJO͍ͨ͠ΧϥϜಉ࢜Ͱσʔλܕ͕ҟͳΔ ੳऀ͝ͱʹڥߏங σʔλసૹίετ
8
ͱͱ͋ͬͨੳج൫ͷ՝ᶅ ˙ϩά૿େʹ͏ύϑΥʔϚϯεϘτϧωοΫ • ࣍όον͕ऴΘΒͳ͍ • ؾܰʹΞυϗοΫੳͰ͖ͳ͍ ˠΫΤϦΛ͛Δࡍ4MBDLʹใࠂ͢Δӡ༻ 9
ݱঢ়ཧ • ϩάαΠζɿʹे(#ʢH[KTPOঢ়ଶʣ ˠ͚ͬ͜͏Ͱ͔͍ɻ͜Ε͔Β૿͑Δ • ਖ਼نԽ͞Ε͍ͯͳ͍ϩά – ୯७ͳσʔλసૹਖ਼نදݱநग़Ͱ͢·ͳ͍ – 4FTTJPOJ[F&5-ͰΔ
• αʔϏεଆͷػೳՃʹ͏ཁ݅มߋ͕༧͞ΕΔ 10
৽͍͠ੳج൫ʹٻΊΒΕΔͷ • ੳऀʹͱ͍͍ͬͯ͢ – 42-ͦΕʹ४ͣΔΫΤϦݴޠ͕ར༻Ͱ͖Δ – Ϩεϙϯεεϧʔϓοτ • Ճ։ൃɾӡ༻͕͍͢͠ –
ྻมߋ͕ॊೈʹͰ͖Δ – ෳࡶͳ&5-ॲཧʹॊೈʹରԠͰ͖Δ • ίετʢΠχγϟϧϥϯχϯάʣ͕ݱ࣮తͰ͋Δ • εέʔϥϒϧͰ͋Δ – ੳରσʔλͷछྨαΠζ͕૿͑ͯରԠͰ͖Δ "84ͱ($1ͷ͍͍ͱ͜ͲΓͨ͠ੳج൫ 11
ͭͬͨ͘ੳج൫ 3FUUZαʔϏεج൫ 3FUUZੳج൫ʢ"84ʣ 3FUUZੳج൫ʢ($1ʣ Kinesis S3 EMR (Spark) S3 EC2
EC2 RDS(MySQL) 分析者 プランナ 12
ͭͬͨ͘ੳج൫ 3FUUZαʔϏεج൫ 3FUUZੳج൫ʢ"84ʣ 3FUUZੳج൫ʢ($1ʣ Kinesis S3 EMR (Spark) S3 EC2
EC2 RDS(MySQL) 分析者 プランナ σʔλϨΠΫ σʔλՃ πʔϧ %8)ɾ%. 13
σʔλϨΠΫɿ4 • ඇߏԽσʔλͷอଘ • αʔϏεͷಈ͍͍ͯΔڥʢ"84ʣʹ͍ۙॴʹσʔλ Λอ࣋͢Δ΄͏͕߹͕Α͍ – ωοτϫʔΫసૹίετ – ཧ͢͠͞
• ಉ͡όέοτͰϓϨϑΟοΫελάΛར༻ͨ͠ॊ ೈͳϥΠϑαΠΫϧͷӡ༻ • ,JOFTJT'JSFIPTFΛར༻͢Δ͜ͱͰ͔ΜͨΜʹ࣌͝ͱʹ σΟϨΫτϦΛ͚ͯอଘͰ͖Δ 14
%8)ɾ%.ɿ#JH2VFSZ • ੳऀʹͱ͍͍ͬͯ͢ – 4UBOEBSE42-͕ར༻Ͱ͖Δ – 6%'8JOEPXؔ͑Δ – εϓϨουγʔτQBOEBTEBUBGSBNFͱͷ࿈ܞ •
ޙͷςʔϒϧઃܭมߋ͕͍͢͠ – ςʔϒϧͷྻՃ͕Ͱ͖Δ • ҆ఆͨ͠ϨΠςϯγͱεϧʔϓοτ • ϝϯςφϯεϑϦʔ • ࣌ؒ՝ۚͰͳ͘ΫΤϦ՝ۚ • 3FE4IJGU"UIFOBΛ͏߹ͱൺͯɺ"84͔Β ($1ͷσʔλసૹ͕ൃੜ͢Δ͕ɺ ӡ༻ίετͷݮͰ૬ࡴͰ͖Δൣғͩͬͨ 15
%8)ൺֱ 3FE4IJGU "UIFOB #JH2VFSZ /8సૹίετ Ϧʔδϣϯ Ϧʔδϣϯؒసૹ ౦ژˠόʔδχ Ξ
Πϯλʔωοτ ӽ͠ͷసૹ ՝ۚํࣜ Քಇ࣌ؒ՝ۚ ΫΤϦ՝ۚ ΫΤϦ՝ۚ 6%' ˓ ✗ ˓ ΧϥϜมߋ ˓ ✗ ˚ ج൫ӡ༻ ඞཁ ඞཁ ΄ͱΜͲͳ͠ ΫΤϦ νϡʔχϯά ඞཁ ඞཁ ΄ͱΜͲͳ͠ ΫΤϦݴޠ TUBOEBSE42- QSFTUP TUBOEBSE42- ࣌ ੨จࣈࠓճͷཁ݅ʹద͍ͯ͠Δ͜ͱΛࣔ͢ 16
&.3 4QBSL σʔλՃ • αʔϏεଆͷϩάઃܭͷؔͰɺҎԼ͕ඞཁͩͬͨɻ – ෆཁͳϩάग़ྗ͕શମͷׂΛΊΔͨΊɺ#JH2VFSZసૹ͢ ΔલʹϑΟϧλॲཧ – 42-ͰදݱͰ͖ͳ͍ඇߏԽσʔλʹର͢Δෳࡶͳ&5-ॲཧ
• ϩά͕૿େͯ͠ΫϥελΛ૿͢͜ͱͰεέʔϧ Ͱ͖Δ • 42-Ͱࡁ·ͤΒΕΔͷ#JH2VFSZ্ͰՃ σʔλՃᶃʢ4QBSLʣ σʔλՃ ᶄʢ42-ʣ 17
ΘΕΔੳج൫ߏஙͷίπ • ૣ͘࡞ͬͯ͑͘ͳ͍ͷΛ࡞ͬͯҙຯ͕ͳ͍ • %8)ͷ߹ɺج൫෦ʮ࡞ͬͯյͯ͠ʯ͕؆୯ʹ ͢·ͳ͍ɻ • ج൫෦৻ॏʹܾΊͨ 5⽉ 6⽉
ཁ݅ώΞϦϯάɺɾٕज़બఆɺ1P$ &5-εΫϦϓτ࡞ɾ ڥߏங ͬͪ͜ʹ͔͚࣌ؒͨɻ ͪΌΜͱΘΕΔੳج൫͕Ͱ͖ͨʂ 18
͍͞͝ʹ • Ϋϥυϑϧ׆༻Ͱੳج൫ΛظؒͰ࡞ΕΔʂ – Ͱ̍ਓͰΔͷͭΒ͔ͬͨɻ৭ΜͳҙຯͰɻ • Ϋϥυଞͷٕज़ɺҰͭʹͩ͜ΘΒͣॊೈʹ׆༻͢Δ ͷେࣄʂ • ࠓճ৮Εͳ͔ٕͬͨज़બఆͷৄ͍͠෦ΞϓϦέʔγϣ
ϯϨΠϠʔͷͱ͔Λͷ95FDI+"84Ͱൃද͢Δ ༧ఆͳͷͰɺڵຯ͋Δํੋඇɻ 19
༻ޠ • σʔλϨΠΫ – ՃલͷੜϩάΛอଘ͢Δॴ • %8) – ੳ͍͢͠Α͏ʹՃ͞ΕͨσʔλΛ֨ೲ͢Δσʔλϕʔε •
%. – ੳ༻్ʹԠͯ͡ूܭޙͷσʔλͳͲΛ֨ೲ͢ΔͳͲɺαϯυ ϘοΫεతʹ͔ͭ͏ͨΊͷσʔλϕʔε • σʔλՃπʔϧ – ϩάΛੳ͍͢͠ܗʹܗ͢Δπʔϧ • ϫʔΫϑϩʔΤϯδϯ – Ұ࿈ͷσʔλॲཧͷϑϩʔΛཧ͢Δπʔϧ 20