Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Caffeでお手軽本格ディープラーニングiOSアプリ
Search
Takuya Matsuyama
October 13, 2015
Technology
1
1.6k
Caffeでお手軽本格ディープラーニングiOSアプリ
@potatotips #22
#DeepLearning #MachineLearning
Takuya Matsuyama
October 13, 2015
Tweet
Share
More Decks by Takuya Matsuyama
See All by Takuya Matsuyama
ネイティブモジュールの作り方 @ React Native Meetup #9 in Japan
craftzdog
6
1.3k
How to Create Native Modules @ React Native Japan Meetup #9
craftzdog
1
900
Introducing Inkdrop for Mobile Built with React Native
craftzdog
1
2.2k
The fun Deep Learning
craftzdog
0
2.9k
Other Decks in Technology
See All in Technology
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
130
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
200
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
190
GCASアップデート(202510-202601)
techniczna
0
250
データの整合性を保ちたいだけなんだ
shoheimitani
7
2.6k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
プロポーザルに込める段取り八分
shoheimitani
0
130
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
Deno・Bunの標準機能やElysiaJSを使ったWebSocketサーバー実装 / ラーメン屋を貸し切ってLT会! IoTLT 2026新年会
you
PRO
0
280
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
140
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
410
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
380
Featured
See All Featured
Crafting Experiences
bethany
1
46
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
440
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
$B⒎FͰ͓खܰຊ֨ σΟʔϓϥʔχϯά J04ΞϓϦ 5",6:" !OPSBEBJLP QPUBUPUJQT
দࢁ w !OPSBEBJLP w ϑϦʔϥϯε ݩ:BIPP w J04ΞϓϦ ΣϒΞϓϦͳͲΛ੍࡞
w ػցֶशʹڵຯ͋Γ w ֆඳ͖·͢ 2
ΊΜ͖͖ ໙ར͖ 3
4 ໙ར͖ ࣸਅʹج͍ͮͯϥʔϝϯΛਪન͢ΔΞϓϦ ೖྗ
5 σΟʔϓϥʔχϯά ͷٕज़Λ༻ ʴ ʹ
ը૾ೝࣝʹڧ͍ ػցֶशΞϧΰϦζϜ 6 σΟʔϓϥʔχϯάͱ
w ͷਆܦߏΛ฿ͨ͠χϡʔϥϧωοτϫʔΫͷҰछ w େྔͷσʔλ͔ΒମͷಛΛࣗಈతʹֶश ‣ ͜Ε·Ͱಛͷநग़ํ๏ਓ͕͕ؒΜͬͯ༻ҙ͍ͯͨ͠ 7
࡞Ζ͏ σΟʔϓϥʔχϯάΞϓϦ ୭Ͱ؆୯ʹ࡞ΕΔํ๏Λ͝հ͠·͢ 8
$B⒎F σΟʔϓϥʔχϯά༻ ϑϨʔϜϫʔΫ w IUUQDB⒎FCFSLFMFZWJTJPOPSH w (16ԋࢉ $6%" ͰߴʹֶशͰ͖Δ w
͙͢ʹࢼͤΔֶशࡁΈϞσϧ͋Δ w .BD049ରԠ 9
Caffe for J04্Ͱಈ͘$B⒎F w IUUQTHJUIVCDPNBMFQIDB⒎F w $B⒎FͷGPSL w J04্Ͱࣝผॲཧ͕࣮༻ʹ͑ΔͰಈ͔ͤΔ ‣
J1IPOFTͰʙඵ w αʔό͍ΒͣͰ͑Δ w ͨͩ͠9$PEF·ͩඇରԠ 10
$B⒎FGPSJ04 αϯϓϧ࡞Γ·ͨ͠ w IUUQTHJUIVCDPNOPSBEBJLP DB⒎FJPTTBNQMF w ୯७ͳମೝࣝ w #-7$$B⒎F/FU.PEFMΛ༻ 11
demo
༻͢Δσʔλ w MBCFMTUYUࣝผ݁ՌΛ໊લʹม͢ΔͨΊͷҰཡ w EFQMPZQSPUPUYUωοτϫʔΫఆٛ w NFBOCJOBSZQSPUPฏۉը૾ w CWMD@SFGFSFODF@DB⒎FOFUDB⒎FNPEFMֶशࡁΈσʔλ 13
ॲཧͷྲྀΕ ࣝผରͷը૾ͷಡΈࠐΈ w ૾ͷը૾ $MBTTJpFSΫϥεͷॳظԽ w ͭͷϞσϧσʔλͷϑΝΠϧύεΛࢦఆ $MBTTJpFSͷ࣮ߦ w ը૾Λࢦఆͯ݁͠ՌΛऔಘ
ࣝผ݁Ռͷग़ྗ 14
UIImage* image = [UIImage imageNamed:@"sample.jpg"]; cv::Mat src_img, img; UIImageToMat(image, src_img);
cv::cvtColor(src_img, img, CV_RGBA2BGRA); ը૾ͷಡΈࠐΈ w 6**NBHFΛಡΈࠐΈ w DW.BUܗࣜʹม w ΧϥʔྻΛ3(#"͔Β#(3"ʹม
// ϑΝΠϧύεΛstringܕʹม string model_file_str = std::string([model_file UTF8String]); string label_file_str =
std::string([label_file UTF8String]); string trained_file_str = std::string([trained_file UTF8String]); string mean_file_str = std::string([mean_file UTF8String]); Classifier classifier = Classifier(model_file_str, trained_file_str, mean_file_str, label_file_str); $MBTTJpFSͷॳظԽ w ϞσϧఆٛɺϥϕϧɺֶशࡁΈϞσϧɺฏۉը૾ͷύεΛऔಘ w ֤ϑΝΠϧύεΛTUETUSJOHʹม w $MBTTJpFSͷΠϯελϯεΛ࡞
// ࣝผͷ࣮ߦ std::vector<Prediction> result = classifier.Classify(img); $MBTTJpFSͷ࣮ߦ w ը૾Λࢦఆ͢Δ͚ͩʂ
for (std::vector<Prediction>::iterator it = result.begin(); it != result.end(); ++it) {
NSString* label = [NSString stringWithUTF8String:it->first.c_str()]; NSNumber* probability = [NSNumber numberWithFloat:it->second]; NSLog(@"label: %@, prob: %@", label, probability); } ࣝผ݁Ռͷग़ྗ w TUEWFDUPSܗࣜͰෳͷࣝผީิ͕ಘΒΕΔ w JUFSBUPSͰճ֤ͯ͠ީิΛऔಘ w JUpSTUϥϕϧɺJUTFDPOE֬
·ͱΊ w $B⒎FΛ͑ΦϦδφϧͷֶशϞσϧ͕࡞ΕΔ w $B⒎FGPSJ04ͳΒαʔό͍ΒͣͰࣝผॲཧ͕ग़དྷΔ w αϯϓϧϓϩδΣΫτͷ͝հ w ΦϦδφϧͷֶशϞσϧͰΞϓϦΛ࡞Ζ͏ʂ 19
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 20