Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Dive - Mosaic AI の Model Training
Search
Databricks Japan
April 12, 2024
Technology
0
230
Deep Dive - Mosaic AI の Model Training
Mosaic AI の Model TrainingについてDeep Diveした資料です。
Databricks Japan
April 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
AIもデータも、もっと身近に。Databricksで広がる金融業界の可能性 / FDUA-Study
databricksjapan
0
53
OTFSG勉強会 / Introduction to the History of Delta Lake + Iceberg
databricksjapan
0
150
[2025年5月版] Azure Databricks最新機能アップデート / 202505 Azure Databricks Latest Updates
databricksjapan
0
190
DatabricksとPower BIの連携メリット / Databricks PowerBI Integration Merits
databricksjapan
1
200
[2025年4月版] Databricks Academy ラボ環境 利用開始手順 / Databricks Academy Labs Onboarding
databricksjapan
2
400
Lakeflow Connectのご紹介
databricksjapan
1
240
MLflowの現在と未来 / MLflow Present and Future
databricksjapan
1
670
Iceberg Meetup Japan #1 : Iceberg and Databricks
databricksjapan
0
850
JEDAI Meetup! Databricks AI/BI概要
databricksjapan
0
640
Other Decks in Technology
See All in Technology
SEQUENCE object comparison - db tech showcase 2025 LT2
nori_shinoda
0
180
事例で学ぶ!B2B SaaSにおけるSREの実践例/SRE for B2B SaaS: A Real-World Case Study
bitkey
1
160
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
1
300
Contributing to Rails? Start with the Gems You Already Use
yahonda
2
110
サイバーエージェントグループのSRE10年の歩みとAI時代の生存戦略
shotatsuge
4
420
AI専用のリンターを作る #yumemi_patch
bengo4com
6
4.4k
United™️ Airlines®️ Customer®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedguide
0
420
[ JAWS-UG千葉支部 x 彩の国埼玉支部 ]ムダ遣い卒業!FinOpsで始めるAWSコスト最適化の第一歩
sh_fk2
2
140
さくらのIaaS基盤のモニタリングとOpenTelemetry/OSC Hokkaido 2025
fujiwara3
3
460
CDK Vibe Coding Fes
tomoki10
0
220
DatabricksにOLTPデータベース『Lakebase』がやってきた!
inoutk
0
140
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
970
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
43
7.6k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
It's Worth the Effort
3n
185
28k
A Tale of Four Properties
chriscoyier
160
23k
Thoughts on Productivity
jonyablonski
69
4.7k
GitHub's CSS Performance
jonrohan
1031
460k
Facilitating Awesome Meetings
lara
54
6.4k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
How to Ace a Technical Interview
jacobian
278
23k
Transcript
Mosaic AI Model Training Deep Dive 1 February 2024
©2024 Databricks Inc. — All rights reserved 2 大規模なLLMの事前学習を どうやって実現するか?
©2024 Databricks Inc. — All rights reserved 3 1つ目:大量のデータ
©2024 Databricks Inc. — All rights reserved 4 The Stack
The Pile C4 mC4 RefinedWeb Dolma RedPajama Your Data …and so on
©2024 Databricks Inc. — All rights reserved 5 2つ目:大規模なモデル
©2024 Databricks Inc. — All rights reserved 6 MPT GPT
LLama Falcon Orca Nemo StarCoder Your Model …and so on
©2024 Databricks Inc. — All rights reserved 7 And then...
©2024 Databricks Inc. — All rights reserved 8 Until...
©2024 Databricks Inc. — All rights reserved データ • クラウドに置いたデータセットで
トレーニング • 高信頼性、高速、スケーラブル 9 高速なトレーニングを追求して開発されたソフトウェア群 The Code • LLMのPre-Training • LLMのFine Tuning • LLMの評価 トレーナー • より高速なトレーニングし • より低いコストで • より高い精度を実現する LLM Foundry Diffusion Composer Streaming
©2024 Databricks Inc. — All rights reserved 10 スケーラビリティを実現するオーケストレーションツール MCLOUD
©2024 Databricks Inc. — All rights reserved 11 スケーラビリティを実現するオーケストレーションツール 数千個のGPUで分散学習
• クラウドを跨いだ学習 • 大規模な並列化 • 数十億パラメータ 学習の失敗に自動で対処 • GPUの障害を検知 • 簡単で高速なリスタート • クラスターを跨いだリカバリ 高度な分散学習 耐障害性 10億パラメータを数分で • 開発し、学習を実行 • 複雑なセットアップや設定は不要 • 反復が容易 シームレス
©2024 Databricks Inc. — All rights reserved 12 MPT-7B MPT-7B-Instruct
MPT-7B-Chat MPT-30B MPT-30B-Chat MPT-* (上記に加え、お客様が使用する全てのLLM)
©2024 Databricks Inc. — All rights reserved 13
©2024 Databricks Inc. — All rights reserved 14 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 • Methods ◦ Alibi : 長いシーケンスへの対応を可能にする ◦ GradientClipping : トレーニングを安定させる • Checkpointing, ICL Evaluation, Auto-Resumption, Lora/PEFT, etc
©2024 Databricks Inc. — All rights reserved 15 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI
©2024 Databricks Inc. — All rights reserved 16
©2024 Databricks Inc. — All rights reserved • Trainer ◦
PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 17 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
©2024 Databricks Inc. — All rights reserved 18 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 • Methods ◦ Alibi : 長いシーケンスへの対応を可能にする ◦ GradientClipping : トレーニングを安定させる
©2024 Databricks Inc. — All rights reserved 19
©2024 Databricks Inc. — All rights reserved 20 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 • Methods ◦ Alibi : 長いシーケンスへの対応を可能にする ◦ GradientClipping : トレーニングを安定させる • Checkpointing, ICL Evaluation, Auto-Resumption, Lora/PEFT, etc
©2024 Databricks Inc. — All rights reserved 21 https://docs.mosaicml.com/ projects/composer/
©2024 Databricks Inc. — All rights reserved 22
©2024 Databricks Inc. — All rights reserved 23 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニング環境へ オンデマンドで直接データをストリーミングで提供 • MDS ◦ Mosaic Data Shards ◦ 高速な学習とデータ転送を可能にするバイナリデータフォーマット • 決定論的なデータシャッフル ◦ 適切なデータシャッフルを決定論的に実施することは非常に難易度が高い ◦ Streaming shuffling = ロスのスパイクを無くし、決定論的シャッフルを実現 ▪ py1s, py1b, etc
©2024 Databricks Inc. — All rights reserved 24 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニング環境へ オンデマンドで直接データをストリーミングで提供
©2024 Databricks Inc. — All rights reserved 25
©2024 Databricks Inc. — All rights reserved 26 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニン グ環境へオンデマンドで直接データをストリーミングで提供 • MDS ◦ Mosaic Data Shards ◦ 高速な学習とデータ転送を可能にするバイナリデータフォーマット
©2024 Databricks Inc. — All rights reserved 27 MPT-30B pre-training
dataset - 10 streams - 488,894 shards - 2,000,047,734 samples (physical) - 32,784,871,217,218 bytes (decompressed)
©2024 Databricks Inc. — All rights reserved 28 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニング環境へ オンデマンドで直接データをストリーミングで提供 • MDS ◦ Mosaic Data Shards ◦ 高速な学習とデータ転送を可能にするバイナリデータフォーマット • 決定論的なデータシャッフル ◦ 適切なデータシャッフルを決定論的に実施することは非常に難易度が高い ◦ Streaming shuffling = ロスのスパイクを無くし、決定論的シャッフルを実現 ▪ py1s, py1b, etc
©2024 Databricks Inc. — All rights reserved 29
©2024 Databricks Inc. — All rights reserved 30
©2024 Databricks Inc. — All rights reserved 31 https://docs.mosaicml.com/ projects/streaming/
©2024 Databricks Inc. — All rights reserved 32
©2024 Databricks Inc. — All rights reserved 33 LLM Foundry
• MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む) • Recipes ◦ PretrainingとFinetuningのためのプリセット構成 ◦ これらのレシピには、PretrainingとFinetuningのために吟味されたハイ パーパラメータが含まれる • Evaluation ◦ InContext Learning による評価や Gauntlet に必要な全てのコード ◦ 学習中、モデル出力からICLタスク生成させ、一連の評価ベンチマークで 実行させることができる。 LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ
©2024 Databricks Inc. — All rights reserved 34 LLM Foundry
LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ • MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む)
©2024 Databricks Inc. — All rights reserved 35 LLM Foundry
LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ • MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む) • Recipes ◦ PretrainingとFinetuningのためのプリセット構成 ◦ これらのレシピには、PretrainingとFinetuningのために吟味されたハイ パーパラメータが含まれる
©2024 Databricks Inc. — All rights reserved 36
©2024 Databricks Inc. — All rights reserved 37 Why YAML?
©2024 Databricks Inc. — All rights reserved 38 Why YAML?
Many, many things to configure
©2024 Databricks Inc. — All rights reserved 39
©2024 Databricks Inc. — All rights reserved 40 LLM Foundry
LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ • MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む) • Recipes ◦ PretrainingとFinetuningのためのプリセット構成 ◦ これらのレシピには、PretrainingとFinetuningのために吟味されたハイ パーパラメータが含まれる • Evaluation ◦ InContext Learning による評価や Gauntlet に必要な全てのコード ◦ 学習中、モデル出力からICLタスク生成させ、一連の評価ベンチマークで 実行させることができる。
©2024 Databricks Inc. — All rights reserved 41
©2024 Databricks Inc. — All rights reserved 42 https://github.com/mosaicm l/llm-foundry
©2024 Databricks Inc. — All rights reserved 43 ソフトウェアだけでなく、 トレーニングを実行する環境も提供
©2024 Databricks Inc. — All rights reserved 44 MCLOUD
©2024 Databricks Inc. — All rights reserved 45 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリン グとデプロイを管理 • 障害の自動リカバリ ◦ GPUの障害をモニタリング ◦ 使用不能になったGPUを除外し、最新の状態から自動的にリスタート • 様々なインテグレーション・ユーティリティ ◦ プロビジョニング環境 (例:正しい WORLD_SIZE の取り込み) ◦ インテグレーション (例:Git、クラウドストレージの認証、 etc) ◦ 全てのノードからリアルタイムにログをストリーミング
©2024 Databricks Inc. — All rights reserved 46 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリ ングとデプロイを管理
©2024 Databricks Inc. — All rights reserved 47 Our LLM
Foundry YAML MCLI YAML
©2024 Databricks Inc. — All rights reserved 48 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリングと デプロイを管理 • 障害の自動リカバリ ◦ GPUの障害をモニタリング ◦ 使用不能になったGPUを除外し、最新の状態から自動的にリスタート
©2024 Databricks Inc. — All rights reserved 49
©2024 Databricks Inc. — All rights reserved 50 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリン グとデプロイを管理 • 障害の自動リカバリ ◦ GPUの障害をモニタリング ◦ 使用不能になったGPUを除外し、最新の状態から自動的にリスタート • 様々なインテグレーション・ユーティリティ ◦ プロビジョニング環境 (例:正しい WORLD_SIZE の取り込み) ◦ インテグレーション (例:Git、クラウドストレージの認証、 etc) ◦ 全てのノードからリアルタイムにログをストリーミング
©2024 Databricks Inc. — All rights reserved 51 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• CLI → MCLI • UI → https://console.mosaicml.com/ • SDK → https://pypi.org/project/mosaicml-cli/
©2024 Databricks Inc. — All rights reserved 52 Demo https://youtu.be/QyxB_QA94U4?si=SF2iCLx0P1TtAaVG