Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB Diagnostics and Performance Tuning
Search
dcrosta
January 23, 2012
Technology
3
1.7k
MongoDB Diagnostics and Performance Tuning
From MongoDB LA, January 19, 2012.
dcrosta
January 23, 2012
Tweet
Share
More Decks by dcrosta
See All by dcrosta
Let the computer write the tests
dcrosta
0
81
Good Test, Bad Test
dcrosta
1
750
Exploring Python Code Objects (PyOhio)
dcrosta
4
340
Python Packaging for Humans
dcrosta
13
510
Exploring Python Code Objects
dcrosta
5
280
Keystone: Python Web Development, Simplified
dcrosta
4
340
MongoDB In the Cloud with Amazon EC2
dcrosta
6
450
Evolution without Migration
dcrosta
2
430
Other Decks in Technology
See All in Technology
【Oracle Cloud ウェビナー】[Oracle AI Database + Azure] AI-Ready データ戦略の最短ルート:Azure AIでビジネス データの価値を最大化
oracle4engineer
PRO
2
120
KubeCon + CloudNativeCon NA ‘25 Recap, Extensibility: Gateway API / NRI
ladicle
0
150
一番人に近いコードレビューア CodeRabbit
kinopeee
0
110
AI開発をスケールさせるデータ中心の仕組みづくり
kzykmyzw
0
170
開発メンバーが語るFindy Conferenceの裏側とこれから
sontixyou
2
220
re:Inventで見つけた「運用を捨てる」技術。
ezaki
1
150
全員が「作り手」になる。職能の壁を溶かすプロトタイプ開発。
hokuo
1
580
20260120 Amazon VPC のパブリックサブネットを無くしたい!
masaruogura
2
160
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
yoshimi0227
1
330
AWSと暗号技術
nrinetcom
PRO
1
180
AWS Devops Agent ~ 自動調査とSlack統合をやってみた! ~
kubomasataka
2
220
2026年はチャンキングを極める!
shibuiwilliam
7
930
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Amusing Abliteration
ianozsvald
0
90
Building the Perfect Custom Keyboard
takai
2
670
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
48
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
84
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
50
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
RailsConf 2023
tenderlove
30
1.3k
Transcript
Diagnostics and Performance Tuning Dan Crosta, 10gen
[email protected]
@lazlofruvous
Agenda •Tools •Performance Indicators
Speed MongoDB is a high-performance database, but how do I
know that I’m getting the best performance
TOOLS
1. mongostat
2.serverStatus > db.serverStatus(); { ! ! "host" : “MacBook.local", "version"
: "2.0.1", "process" : "mongod", "uptime" : 619052, // Lots more stats... }
3.Profiler > db.setProfilingLevel(2); { "was" : 0, "slowms" : 100,
"ok" : 1 }
3.Profiler > db.system.profile.find() { "ts" : ISODate("2011-09-30T02:07:11.370Z"), "op" : "query",
"ns" : "docs.spreadsheets", "query" : { "username": "dcrosta" }, "nscanned" : 20001, "nreturned" : 1, "responseLength" : 241, "millis" : 1407, "client" : "127.0.0.1", "user" : "" }
4.Monitoring Service • MMS: 10gen.com/try-mms • Nagios • Munin
INDICATORS
1.Slow Operations Sun May 22 19:01:47 [conn10] query docs.spreadsheets ntoreturn:100
reslen:510436 nscanned:19976 { username: “dcrosta”} nreturned:100 147ms
2.Replication Lag PRIMARY> rs.status() { "set" : "replSet", "date" :
ISODate("2011-09-30T02:28:21Z"), "myState" : 1, "members" : [ { "_id" : 0, "name" : "MacBook.local:30001", "health" : 1, "state" : 1, "stateStr" : "PRIMARY", "optime" : { "t" : 1317349400000, "i" : 1 }, "optimeDate" : ISODate("2011-09-30T02:23:20Z"), "self" : true }, { "_id" : 1, "name" : "MacBook.local:30002", "health" : 1, "state" : 2, "stateStr" : "SECONDARY", "uptime" : 302, "optime" : { "t" : 1317349400000, "i" : 1 }, "optimeDate" : ISODate("2011-09-28T10:17:47Z"), "lastHeartbeat" : ISODate("2011-09-30T02:28:19Z"),
3.Resident Memory > db.serverStatus().mem { "bits" : 64, // Need
64, not 32 "resident" : 7151, // Physical memory "virtual" : 14248, // Files + heap "mapped" : 6942 // Data files
3.Resident Memory > db.stats() { "db" : "docs", "collections" :
3, "objects" : 805543, "avgObjSize" : 5107.312096312674, "dataSize" : 4114159508, // ~4GB "storageSize" : 4282908160, // ~4GB "numExtents" : 33, "indexes" : 3, "indexSize" : 126984192, // ~126MB "fileSize" : 8519680000, // ~8.5GB "ok" : 1 }
3.Resident Memory ! ! indexSize + dataSize <= RAM
4.Page Faults > db.serverStatus().extra_info { ! "note" : "fields vary
by platform", ! “heap_usage_bytes” : 210656, ! “page_faults” : 2381 }
5.Write Lock Percentage > db.serverStatus().globalLock { "totalTime" : 2809217799, "lockTime"
: 13416655, "ratio" : 0.004775939766854653, }
Concurrency • One writer or many readers • Global RW
Lock • Yields on long-running ops and if we’re likely to go to disk.
High Lock Percentage? You’re Probably Paging!
6.Reader and Writer Queues > db.serverStatus().globalLock { "totalTime" : 2809217799,
"lockTime" : 13416655, "ratio" : 0.004775939766854653, "currentQueue" : { "total" : 1, "readers" : 1, "writers" : 0 }, "activeClients" : { "total" : 2, "readers" : 1, "writers" : 1 }
6.Reader and Writer Queues > db.currentOp() { "inprog" : [
{ "opid" : 6996, "active" : true, "lockType" : "read", "waitingForLock" : true, "secs_running" : 1, "op" : "query", "ns" : "docs.spreadsheets", "query" : { “username” : “Hackett, Bernie” }, "client" : "10.71.194.111:51015", "desc" : "conn", "threadId" : "0x152693000", "numYields" : 0 },
7.Background Flushing > db.serverStatus().backgroundFlushing { "flushes" : 5634, "total_ms" :
83556, "average_ms" : 14.830670926517572, "last_ms" : 4, "last_finished" : ISODate("2011-09-30T03:30:59.052Z") }
Disk Considerations • Raid • SSD • SAN?
8.Connections > db.serverStatus().connections { "current" : 7, "available" : 19993
}
9.Network Speed > db.serverStatus().network { "bytesIn" : 877291, "bytesOut" :
846300, "numRequests" : 9186 }
10.Fragmentation db.spreadsheets.stats() { "ns" : "docs.spreadhseets", "size" : 8200046932, //
~8GB "storageSize" : 11807223808, // ~11GB "paddingFactor" : 1.4302, "totalIndexSize" : 345964544, // ~345MB "indexSizes" : { "_id_" : 66772992, “username_1_filename_1” : 146079744, “username_1_updated_at_1” : 133111808 }, "ok" : 1 }
10.Fragmentation 2 is the Magic Number
storageSize / size > 2 • Might not be reclaiming
free space fast enough • Padding factor might not be correctly calibrated db.spreadsheets.runCommand(“compact”)
paddingFactor > 2 • You might have the wrong data
model • You might be growing documents too much • Should review Schema Design
download at mongoDB.org
We’re Hiring Engineers, Sales, Evangelist, Marketing, Support, Developers @mongodb_jobs http://linkd.in/joinmongo
We’re Always Around For Conferences, Appearances and Meetups 10gen.com/events @mongodb
h2p://bit.ly/mongo8