Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TROCCO今昔
Search
gtnao
July 18, 2025
Technology
0
290
TROCCO今昔
Data Engineering Study #30
primeNumber inc. Sponsor LT
https://primenumber.com/
gtnao
July 18, 2025
Tweet
Share
More Decks by gtnao
See All by gtnao
ClaudeCodeにキレない技術
gtnao
1
1.4k
PaaSとSaaSの境目で信頼性と開発速度を両立する 〜TROCCO®︎のこれまでとこれから〜
gtnao
8
19k
0 -> 1でフロントエンドのテストを 書く文化を作っている話
gtnao
2
2.6k
ZetaSQLを使って、 カラムリネージ機能を作った話
gtnao
3
1.9k
Other Decks in Technology
See All in Technology
自動テストのコストと向き合ってみた
qa
0
110
BirdCLEF+2025 Noir 5位解法紹介
myso
0
190
AI ReadyなData PlatformとしてのAutonomous Databaseアップデート
oracle4engineer
PRO
0
170
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
0
110
コンテキストエンジニアリングとは? 考え方と応用方法
findy_eventslides
4
890
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
110
Where will it converge?
ibknadedeji
0
180
それでも私はContextに値を詰めたい | Go Conference 2025 / go conference 2025 fill context
budougumi0617
4
1.2k
AWSにおけるTrend Vision Oneの効果について
shimak
0
120
Azure Well-Architected Framework入門
tomokusaba
1
290
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
120
多野優介
tanoyusuke
1
420
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
460k
Designing for Performance
lara
610
69k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
How GitHub (no longer) Works
holman
315
140k
Optimizing for Happiness
mojombo
379
70k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
It's Worth the Effort
3n
187
28k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Transcript
TROCCO今昔 Data Engineering Study #30 primeNumber inc. Sponsor LT
本スライドは Claude CodeとMarpのみで 作成されました
AGENDA 1. 自己紹介 2. TROCCOとは 3. 年表 4. 黎明期(2018年) 5.
成長期(2019年〜2023年) 6. 転換期(2024年) 7. 現在地(2025年)
Naotaka Nakane @gtnao primeNumber プロダクト開発本部 CTO室 室長 Staff Software Engineer
2018年11月入社(TROCCOリリースと同じ月!) 色々つくってきました ワークフロー プログラミングETL dbt連携 データカタログ(旧 COMETA) Self-Hosted Runner etc...
TROCCOとは 点在するデータの「統合」を自動化。 「統合」を軸にデータ基盤の構築や運用を支援するSaaSプロダクト。 データをビジネスに活用するまでのステップ
TROCCOの機能 統合の他にも、データ加工を手間なく実現できるデータマート機能や、 データ処理のプロセスを管理するワークフロー機能等も搭載し、 データ基盤の構築・運用を総合的に支援します。
7年前までタイムスリップ 🕑
TROCCO年表 2018 Next 2018.11 TROCCOリリース Embulkベースの転送機能のみを 備えたSaaSとしてローンチ 2019 夏 データマート機能
転送後の変換処理を シンプルなSQL実行機能として サポート 2020 春 ワークフロー機能 複雑な依存関係をGUIで定義し データパイプラインの構築が可能に 2022 夏 データカタログ機能 メタデータ領域に進出 2024 春 ブランドイメージ刷新 COMETA誕生 Connect 100+プロジェクト 2025 現在 最新アップデート コネクタ爆増中 Self-Hosted Runner COMETA AI
黎明期:2018年
プレスリリース(2018年11月8日)
初期のトップページ
初期の転送設定画面
初期のプレビュー画面
初期の特徴 転送設定とスケジュール実行のみのシンプルな構成 コネクタ(10個前後) DWH:BigQuery、Redshift Database:MySQL、PostgreSQL ストレージ:S3、GCS、SFTP ※ SalesforceなどのSaaS系や広告系コネクタはまだ無し
成長期:2019年〜2023年
2019年:データマート機能 データ転送後の変換処理を、シンプルなスケジュールドSQL機能として提供 SQLが書ければすぐに使える dbtよりも手軽に始められる TROCCOの屋台骨を支える機能として、2025年現在も広く使われている
2020年:ワークフロー機能 ついに本格的なワークフロー機能が登場 各転送機能の依存関係を定義可能 GUIでドラッグ&ドロップ、DAGを直感的に構築 複雑なデータパイプラインの可視化と管理 💡 実は2020年(ローンチ2年後)までワークフロー機能は存在しませんでした...
初期のワークフロー画面
以前はどうしてた? ジョブ依存機能 各設定単位で、依存する設定を定 義できる機能があった 全体を俯瞰して、フローを組める 機能はなかった
その他機能の拡充 SaaS、広告系コネクタの拡充 プログラミングETL スキーマ追従機能 変更ロールバック機能 マネージドデータ転送機能 ワークフローのループ実行 データチェック機能 dbt連携 データカタログ機能
ラベル機能 チーム機能 SAML認証・2要素認証・IP制限 監査ログ etc..
転換期:2024年
COMETAリリース TROCCOのデータカタログ機能がCOMETAとして生まれ変わる
ブランドリニューアル 親しみやすさは残したまま、信頼性の感じられるデザインへ
(参考) ブランドアイデンティティの再構築 https://note.com/kotaki_kazumasa/n/nc9fe25adbb6a
Connect 100+ 構想スタート 会計、人事、決済、RevOpsといった領域で 1年で100以上の新しいコネクタを提供する 野心的なプロジェクト
現在地:2025年
コネクタの爆発的増加 Connect 100+ プロジェクトの成果 2024年11月:110程度 2025年7月現在:170程度 9ヶ月で約60個増加 SAPなどのエンタープライズ向け コネクタもサポート
(参考) Connect 100+ を支える技術 https://speakerdeck.com/kanyamaguc/connect-100-plus-wozhi-eruji-shu
Self-Hosted Runner Dockerがあれば、どこでも転送ジョブを実行 SaaS版TROCCOとハイブリッド構成 データ転送はコンテナ内で完結 通信はコンテナから開始(セキュアな設計) ネットワーク制約を柔軟に回避
データカタログからAIデータプラットフォームへ COMETA AIチャット メタデータ自動生成
Coming Soon... ワークフローの条件分岐機能 より柔軟なフロー制御が可能に
多様な条件分岐に対応 指定可能な条件 実行時刻 ジョブの完了ステータス HTTPタスクのレスポンスコード
あらゆるデータを、ビジネスの力に変えるべく これからも開発していきます🚀
Happy Data Engineering!