Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Elasticsearch for SQL Users, as presented at KC...

Elasticsearch for SQL Users, as presented at KCDC 2016

Elastic Co

June 24, 2016
Tweet

More Decks by Elastic Co

Other Decks in Technology

Transcript

  1. 8 CREATE TABLE IF NOT EXISTS emails ( sender VARCHAR(255)

    NOT NULL, recipients TEXT, cc TEXT, bcc TEXT, subject VARCHAR(1024), body MEDIUMTEXT, datetime DATETIME ); CREATE INDEX emails_sender ON emails(sender); CREATE FULLTEXT INDEX emails_subject ON emails(subject); CREATE FULLTEXT INDEX emails_body ON emails(body); curl -XPUT 'http://localhost:9200/enron' -d' { "mappings": { "email": { "properties": { "sender": { "type": "keyword" }, "recipients": { "type": "keyword" }, "cc": { "type": "keyword" }, "bcc": { "type": "keyword" }, "subject": { "type": "text", "analyzer": "english" }, "body": { "type": "text", "analyzer": "english" } } } } Schemas
  2. 10 [LIVE DEMO] • Search for text in a single

    field • Search for text in multiple fields • Search for a phrase https://github.com/ycombinator/es-enron
  3. 11 Other Search Features Stemming Synonyms Did you mean? •

    Jump, jumped, jumping • Queen, monarch • Monetery => Monetary
  4. 13 To analyze (text) or not to analyze (keyword)? PUT

    cities/city/1 { "city": "Omaha", "population": 434353 } PUT cities/city/2 { "city": "New Albany", "population": 8829 } PUT cities/city/3 { "city": "New York", "population": 8406000 } POST cities/_search { "query": { "match": { "city": "New Albany" } } } QUERY + = ?
  5. 14 To analyze (text) or not to analyze (keyword)? PUT

    cities/city/1 { "city": "Omaha", "population": 434353 } PUT cities/city/2 { "city": "New Albany", "population": 8829 } PUT cities/city/3 { "city": "New York", "population": 8406000 } Term Document IDs albany 2 new 2,3 omaha 1 york 3
  6. 15 To analyze (text) or not to analyze (keyword)? PUT

    cities { "mappings": { "city": { "properties": { "city": { "type": "keyword" } } } } } MAPPING Term Document IDs New Albany 2 New York 3 Omaha 1
  7. PUT blog/post/1 { "author_id": 1, "title": "...", "body": "..." }

    PUT blog/post/2 { "author_id": 1, "title": "...", "body": "..." } PUT blog/post/3 { "author_id": 1, "title": "...", "body": "..." } 16 Relationships: Application-side joins PUT blog/author/1 { "name": "John Doe", "bio": "..." } POST blog/author/_search { "query": { "match": { "name": "John" } } } QUERY 1 POST blog/post/_search { "query": { "match": { "author_id": <each id from query 1 result> } } } QUERY 2
  8. PUT blog/post/1 { "author_name": "John Doe", "title": "...", "body": "..."

    } PUT blog/post/2 { "author_name": "John Doe", "title": "...", "body": "..." } 17 Relationships: Data denormalization POST blog/post/_search { "query": { "match": { "author_name": "John" } } } QUERY PUT blog/post/3 { "author_name": "John Doe", "title": "...", "body": "..." }
  9. 18 Relationships: Nested objects PUT blog/author/1 { "name": "John Doe",

    "bio": "...", "blog_posts": [ { "title": "...", "body": "..." }, { "title": "...", "body": "..." }, { "title": "...", "body": "..." } ] } POST blog/author/_search { "query": { "match": { "name": "John" } } } QUERY
  10. 19 Relationships: Parent-child documents PUT blog/author/1 { "name": "John Doe",

    "bio": "..." } POST blog/post/_search { "query": { "has_parent": { "type": "author", "query": { "match": { "name": "John" } } } QUERY PUT blog { "mappings": { "author": {}, "post": { "_parent": { "type": "author" } } } } PUT blog/post/1?parent=1 { "title": "...", "body": "..." } PUT blog/post/2?parent=1 { "title": "...", "body": "..." } PUT blog/post/3?parent=1 { "title": "...", "body": "..." }
  11. 22 Async replication to Elasticsearch 1 2 3 ESSynchronizer flow

    by Yamini Ahluwalia from the Noun Project
  12. 25 Forked writes from application (more robust) 1 2 queue

    by Huu Nguyen from the Noun Project ESSynchronizer 3 4