Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python DSL
Search
Elasticsearch Inc
March 11, 2015
Technology
2
930
Python DSL
Slides for Honza's talk at Elastic{on}
Elasticsearch Inc
March 11, 2015
Tweet
Share
More Decks by Elasticsearch Inc
See All by Elasticsearch Inc
OSCON: Scaling a distributed engineering team from 50-250
elasticsearch
13
1.5k
Stuff a Search Engine Can Do
elasticsearch
17
1.7k
Using Elastic to monitor anything
elasticsearch
3
1.5k
Log all the things!
elasticsearch
4
1.2k
Why Elastic? @ 50th Vinitaly 2016
elasticsearch
5
1.9k
What's New In Elasticland?
elasticsearch
3
940
Kibana, Timelion, Graph Meetup
elasticsearch
3
790
Elastic for Time Series Data and Predictive Analytics
elasticsearch
4
3.1k
Elastic 2.0
elasticsearch
1
750
Other Decks in Technology
See All in Technology
PHPからはじめるコンピュータアーキテクチャ / From Scripts to Silicon: A Journey Through the Layers of Computing
tomzoh
2
120
「Chatwork」のEKS環境を支えるhelmfileを使用したマニフェスト管理術
hanayo04
1
400
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
410
大量配信システムにおけるSLOの実践:「見えない」信頼性をSLOで可視化
plaidtech
PRO
0
390
microCMSではじめるAIライティング
himaratsu
0
150
無理しない AI 活用サービス / #jazug
koudaiii
0
100
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.7k
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
1k
伴走から自律へ: 形式知へと導くSREイネーブリングによる プロダクトチームの信頼性オーナーシップ向上 / SRE NEXT 2025
visional_engineering_and_design
3
460
ClaudeCode_vs_GeminiCLI_Terraformで比較してみた
tkikuchi
1
940
推し書籍📚 / Books and a QA Engineer
ak1210
0
140
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
660
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
990
The Invisible Side of Design
smashingmag
301
51k
RailsConf 2023
tenderlove
30
1.1k
How to Ace a Technical Interview
jacobian
278
23k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Embracing the Ebb and Flow
colly
86
4.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
How STYLIGHT went responsive
nonsquared
100
5.6k
Transcript
Python DSL Honza Král @honzakral
{ } DSL 2
{ } DSL ? Don't you mean ORM? 3
{ } Current State { "query": { "filtered": { "query":
{ "function_score": { "query": { "bool": { "must": [ {"multi_match": { "fields": ["title^10", "body"], "query": "php"}}, {"has_child": { "child_type": "answer", "query": {"match": {"body": "python"}}}} ], "must_not": [ {"multi_match": { "fields": ["title", "body"], "query": "python"}} ] } }, "field_value_factor": {"field": "rating"} } }, "filter": {"range": {"creation_date": {"from": "2010-01-01"}}} }}, 4 "highlight": { "fields": { "title": {"fragment_size" : 50}, "body": {"fragment_size" : 50} } }, "aggs": { "tags": { "terms": {"field": "tags"}, "aggs": { "comment_avg": { "avg": {"field": "comment_count"} } } }, "frequency": { "date_histogram": { "field": "creation_date", "interval": "month" } } } } JSON DSL
{ } Now add a filter to it! 5
{ } Search Object s = Search(doc_type='question') 6
{ } Simple Query s = s.query('multi_match', fields=['title^10', 'body'], query='php')
7
{ } Compound Query s = s.query('has_child', child_type='answer', query=Q('match', body='python'))
8
{ } Q shortcut {"has_child": { "child_type": "answer', "query": {"match":
{"body": "python"}}}} Q({'has_child': { 'child_type': 'answer', 'query': {'match': {'body': 'python'}}}}) Q('has_child', child_type='answer', query=Q('match', body='python')) HasChild(child_type='answer', query=Match(body='python')) 9
{ } Query expressions Q(...) & Q(...) == Bool(must=[Q(...), Q(...)])
Q(...) | Q(...) == Bool(should=[Q(...), Q(...)]) ~Q(...) == Bool(must_not=[Q(..)]) 10
{ } Filter s = s.filter('range', creation_date={'from': date(2010, 1, 1)})
11
{ } Exclude s = s.query(~Q('multi_match', fields=['title^10', 'body'], query='python')) 12
{ } Manual query s.query = Q('function_score', query=s.query, field_value_factor={'field': 'rating'})
13
{ } Aggregations s.aggs.bucket('tags', 'terms', field='tags')\ .metric('comment_avg', 'avg', field='comment_count') s.aggs.bucket('frequency',
'date_histogram', field='creation_date', interval='month') 14
{ } Highlight ... s = s.highlight('title', 'body', fragment_size=50) 15
{ } Migration path s = Search.from_dict(my_glorious_query) s = s.filter('term',
tag='published') my_glorious_query = s.to_dict() 16 query at a time
{ } Response response = s.execute() for hit in response:
print(hit.meta.score, hit.title) for tag in response.aggregations.tags.buckets: print(tag.key, tag.avg_comments.value) 17 No more brackets!
{ } Persistence From Mapping to Model-like DocTypes 18
{ } Mapping DSL m = Mapping('article') m.field('published_from', Date()) m.field('title',
String(fields={'raw': String(index='not_analyzed')})) m.field('comments', Nested()) m['comments'].property('author', String()) m.save('index-name') m.update_from_es('index-name') 19
{ } DocType class Article(DocType): title = String() created_date =
Date() comments = Nested(properties={'author': String()}) class Meta: index = 'blog' def save(self, **kwargs): self.created_date = now() super().save(**kwargs) Article.init() Article.search()... Search(doc_type=Article) 20
{ } Configuration 21
{ } Connections connections.configure( default={'hosts': ['localhost'], 'sniff_on_start': True}, logging={ 'hosts':
['log1:9200', 'log2:9200'], 'timeout': 30, 'sniff_timeout': 120}) Search(using='logging') es = connections.get_connection() es.indices.delete(index='_all') 22
{ } Future 23
{ } More DSLs! Index Analyzers Settings ... 24
{ } FacetedSearch ? class MySiteSearch(FacetedSearch): doc_type = [Article, Comment]
fields = ['title', 'body'] published = DateHistogram( interval='week', field='published_date') category = Term(field='category') 25 Definition ???
{ } FacetedSearch ? s = MySiteSearch('python', category='blog') for hit
in s: print(h.meta.score, h.title) cat_facet = s.facets['category'] for name, count in cat_facet: mask = '%s: %d' if name == cat_facet.selected: mask = '<b>%s: %d</b>' print(mask % (name, count)) 26 Usage ????
{ } Django integration ? Model -> DocType signal handlers
to update management command to sync FacetedSearch -> Form view + template pattern 27
{ } Thank you! @honzakral
{ } This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to: Creative Commons PO Box 1866 Mountain View, CA 94042 USA CC-BY-ND 4.0 29