Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
how_to_ab_test_with_confidence_railsconf.pdf
Search
Frederick Cheung
April 13, 2021
Programming
0
56
how_to_ab_test_with_confidence_railsconf.pdf
Frederick Cheung
April 13, 2021
Tweet
Share
More Decks by Frederick Cheung
See All by Frederick Cheung
Fixing Performance and Memory Problems (RubyWine)
fcheung
0
55
Fixing Performance and Memory Problems
fcheung
2
520
Asking questions
fcheung
0
55
Extending Ruby
fcheung
1
470
Introduction to Version Control
fcheung
0
79
Other Decks in Programming
See All in Programming
「テストは愚直&&網羅的に書くほどよい」という誤解 / Test Smarter, Not Harder
munetoshi
0
180
RailsGirls IZUMO スポンサーLT
16bitidol
0
190
AI駆動のマルチエージェントによる業務フロー自動化の設計と実践
h_okkah
0
170
Python型ヒント完全ガイド 初心者でも分かる、現代的で実践的な使い方
mickey_kubo
1
130
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
650
Porting a visionOS App to Android XR
akkeylab
0
480
テスト駆動Kaggle
isax1015
0
300
地方に住むエンジニアの残酷な現実とキャリア論
ichimichi
5
1.6k
ソフトウェア品質を数字で捉える技術。事業成長を支えるシステム品質の マネジメント
takuya542
2
13k
AIプログラマーDevinは PHPerの夢を見るか?
shinyasaita
1
230
NPOでのDevinの活用
codeforeveryone
0
850
Advanced Micro Frontends: Multi Version/ Framework Scenarios @WAD 2025, Berlin
manfredsteyer
PRO
0
160
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Making Projects Easy
brettharned
116
6.3k
Side Projects
sachag
455
42k
Become a Pro
speakerdeck
PRO
29
5.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Practical Orchestrator
shlominoach
189
11k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Transcript
How to A/B Test with con fi dence @fglc2 Photo
by Ivan Aleksic on Unsplash
None
The Plan • Intro: What's an A/B Test? • Test
setup errors • Errors during the test • Test analysis errors • Best practices Photo by Javier Allegue Barros on Unsplash
What is an A/B test?
Buy Now Order Or
🧛🙋🙋🙋🧕🧑✈👨🌾👩💼💁🧑🎨 🧑🎤👩💼🙋👷🙋👩🏭🕵🙋🧑🚀🧝 👨🎓💁👨🏭💂👩🌾🧛🧑✈💁🧝💁 🙋🕵👩🏭👨🚀🙋🧕👨🦱👰👨🎓🕵 👩🔧🧑🚒👩🚀🧝👨🎓🥷🧑🏭🧕🧑✈🧟
💁👨🏭🙋🙋🧕🧕🧝 👩🏭👨🚀🧛👩💼💁👰👨🎓 🕵🧟💁🧑🎨🧑🎤🧕👨🎓 🙋💂👨🌾👩🏭 🕵👩🚀🧝👨🎓👨🦱🧑✈👩🔧 🕵🥷🧑🏭🧑✈👩🌾👩💼👷 🙋🙋🧑🚒🙋🧑🚀🧑✈💁 🧝🧛🙋🙋 Buy Now
Order 49 orders 56 orders
Is the difference real?
• Layouts / designs / fl ows • Algorithms (eg
recommendation engines) • Anything where you can measure a di ff erence Not just buttons!
Jargon
Signi fi cance • Is the observed di ff erence
is just noise? • p value of 0.05 = 5% chance it’s a fl uke • The statistical test depends on the type of metric • No guarantees on the magnitude of the di ff erence
Test power Photo by Michael Longmire on Unsplash Test power
Test power • How small a change do I want
to detect? • 10% to 20% is much easier to measure than 0.1% to 0.2%
Sample size • Check this is feasible! • Ideally you
don’t look / change anything until sample size reached • Be wary of very short experiments
Bayesian A/B testing
Bayesian A/B testing
Bayesian A/B testing • Allows you to model your existing
knowledge & uncertainties • Can be better at with low base rates • The underlying maths are a bit more complicated
Test setup errors
Group Randomisation Photo by Macau Photo Agency on Unsplash
class User < ActiveRecord::Base def ab_group if id % 2
== 0 'experiment' else 'control' end end end
class User < ActiveRecord::Base def ab_group(experiment) hash = Digest::SHA1.hexdigest( “#{experiment}-#{id}"
).to_i(16) if hash % 2 == 0 'experiment' else 'control' end end end
Non random split • Newer users in other group •
Older users in one group • New users were less loyal!
Starting too early
Home Page 50,000 Users Home Page 50,000 Users
30,000 Users 30,000 Users Home Page 50,000 Users Home Page
50,000 Users
15,000 Users 15,000 Users 30,000 Users 30,000 Users Home Page
50,000 Users Home Page 50,000 Users
Checkout Page A Checkout Page B 5,000 Users 5,000 Users
15,000 Users 15,000 Users 30,000 Users 30,000 Users Home Page 50,000 Users Home Page 50,000 Users
2600 conversions 2500 conversions Checkout Page A Checkout Page B
5,000 Users 5,000 Users 15,000 Users 15,000 Users 30,000 Users 30,000 Users Home Page 50,000 Users Home Page 50,000 Users
2600 conversions 2500 conversions Home Page 100,000 Users 60,000 Users
30,000 Users Checkout Page A Checkout Page B 5,000 Users 5,000 Users
Not agreeing setup • Scope of the test (what pages,
users, countries ...) • What is the goal? How do we measure it? • Agree *one* metric
Errors during the test Photo by Sarah Kilian on Unsplash
A test measures the impact of all differences
Ecommerce Service Recommendation Service
Ecommerce Service Recommendation Service 10x more crashes
Repeated signi fi cance testing • Invalidates signi fi cance
calculation • Di ffi cult to resist! • Stick to your Sample Size • This is fi ne with Bayesian A/B testing
Test analysis errors Photo by Isaac Smith on Unsplash
Do the maths • Use the appropriate statistical test •
Signi fi cance on one metric does not imply signi fi cance on another
Outliers Photo by Ministerie van Buitenlandse Zaken
Photo by Ministerie van Buitenlandse Zaken
Photo by Ministerie van Buitenlandse Zaken
Understanding the domain
-4 -3 -2 -1 0 week 1 week 2 week
3
-4 -2 0 2 4 6 8 week 1 week
2 week 3 week 4 week 5 week 6 week 7
Results splitting
💰
💰
We aren't neutral
If the result is 'right' 🎉
If the result is 'wrong' • Start looking at result
splits • Start digging for potential errors • Hey what about this other metric • Well documented test can help
Best practices Photo by SpaceX on Unsplash
Don't reinvent the wheel • Split, Vanity gems do a
good job • Consider platforms (Optimizely, Google Optimize) • But understand your tool, drawbacks
Resist the urge to check/tinker • Repeated signi fi cance
testing • Changing the test while it is running (restart the test if necessary)
A/A tests • Do the full process but with no
di ff erence between the variants • Allows you to practise
Be wary of overtesting • Let's test everything! • Can
be paralysing/time consuming • Not a substitute for vision / talking to your users
Document your test • Metric (inc. outliers etc.) • Success
criteria • Scope • Sample size / test power • Signi fi cance calculation/process • Meaningful variant names
Thank you! @fglc2
Further Reading • https://www.evanmiller.org/how-not-to-run-an-ab-test.html • https://making.lyst.com/bayesian-calculator/ • https://www.chrisstucchio.com/blog/2014/ bayesian_ab_decision_rule.html @fglc2