Desenvolvimento de Sistemas Multiagentes Aplicados a Redes de Distribuição de Energia Elétrica Inteligentes
Qualificação do meu doutorado sobre o tema de modelagem e simulação de funcionalidades dos smart grids (redes elétricas inteligentes) utilizando sistemas multiagentes.
Energia Elétrica Inteligentes Filipe de Oliveira Saraiva Laboratório de Análise de Sistemas de Energia Elétrica – LASEE Departamento de Engenharia Elétrica e Computação – SEL Escola de Engenharia de São Carlos – EESC Universidade de São Paulo – USP 15 de maio de 2014 Filipe de Oliveira Saraiva 15 de maio de 2014 1 / 65
Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 2 / 65
Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 3 / 65
de funcionalidades de uma rede de distribuição de energia elétrica do tipo smart grid através de sistemas multiagentes em termos de sistemas computacionais distribuídos. Objetivos Específicos Embasar smart grids com a área de sistemas distribuídos; Modelar equipamentos e funcionalidades utilizando sistemas multiagentes; Desenvolver algoritmos que utilizem computação distribuída; Contribuição pedagógica; ... Filipe de Oliveira Saraiva 15 de maio de 2014 5 / 65
e matérias jornalísticas sobre o smart grids; Método de simulação escolhido após maior conhecimento do problema; Temas: sistemas de potência, inteligência artificial, sistemas multiagentes, sistemas distribuídos; Conceituar os smart grids como sistemas distribuídos; Filipe de Oliveira Saraiva 15 de maio de 2014 6 / 65
Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 7 / 65
O que esperar dos Smart Grids Melhor eficiência energética; Funcionalidades de controle e automação distribuídas pelo sistema; Melhor adequação às exigências de um mercado desregulado; Filipe de Oliveira Saraiva 15 de maio de 2014 8 / 65
Funcionalidades desejadas para os Smart Grids Auto-recuperação do sistema; Alta qualidade da energia entregue; Resistência a ataques cibernéticos; Gerenciamento de grande quantidade de geradores distribuídos; Otimização de diversas características; Minimizar custos relativos à operação; ... Filipe de Oliveira Saraiva 15 de maio de 2014 9 / 65
Algumas iniciativas de Smart Grids no Brasil Aparecida – EDP; CEMIG; Smart Light; Parintins – Eletrobrás; ... Filipe de Oliveira Saraiva 15 de maio de 2014 12 / 65
2 Smart Grids 3 Sistemas Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 13 / 65
Smart Grids Sistemas Distribuídos Concorrência Heterogeneidade Sem horário global Falhas independentes Protocolos abertos de comunicação Smart Grids Concorrência Heterogeneidade Sem horário global Falhas independentes Protocolos abertos de comunicação Filipe de Oliveira Saraiva 15 de maio de 2014 14 / 65
de Sistemas Multiagentes Linguagens de programação, bibliotecas, frameworks (escolhida: JADE) & Metodologias de modelagem e desenvolvimento (escolhida: Prometheus) Filipe de Oliveira Saraiva 15 de maio de 2014 16 / 65
1 Introdução 2 Smart Grids 3 Sistemas Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 18 / 65
do Problema Cargas não-lineares responsáveis por degradação da qualidade da energia; Identificar as cargas na rede auxiliará na identificação desses problemas; Possibilidade de benefícios adicionais para o usuário; Problemas com a tecnologia Privacidade Filipe de Oliveira Saraiva 15 de maio de 2014 19 / 65
de Resolução Com os sistemas multiagentes é possível modelar equipamentos de um smart grid para solucionar esse problema. Equipamento para leitura das cargas; Equipamento na subestação para guarda de logs; Há diferentes possibilidades para a classificação das cargas. Filipe de Oliveira Saraiva 15 de maio de 2014 20 / 65
de Resolução 1 2 3 4 23 1 2 3 21 1 2 3 4 8 Camada Oculta Camada de Entrada Camada de Saída Ferramenta para classificação: Rede Neural do tipo Perceptron Filipe de Oliveira Saraiva 15 de maio de 2014 21 / 65
de Resolução Subestação recebe os sinais classi cados Smart meter: classi cação dos sinais Smart meter : envia sinais para a subestação Classi cador das cargas na subestação Filipe de Oliveira Saraiva 15 de maio de 2014 22 / 65
de Resolução Início Leitura dos sinais Realiza classificação das cargas não-lineares Envia mensagem para Agente Subestação Aguarda intervalo de tempo para próxima leitura do sinal Não Sim Intervalo de tempo completo? Início Aguarda mensagem do smart meter Mensagem recebida Guarda dados sobre a carga não-linear e consumidor Filipe de Oliveira Saraiva 15 de maio de 2014 23 / 65
de Resolução Não Sim Intervalo de tempo completo? Início Leitura dos sinais Envia mensagem para Agente Subestação Aguarda intervalo de tempo para próxima leitura do sinal Guarda dados sobre a carga não-linear e consumidor Aguarda mensagem do smart meter Início Mensagem recebida Realiza a classificação das cargas não-lineares Filipe de Oliveira Saraiva 15 de maio de 2014 24 / 65
Computacional e Resultados Conjunto de treinamento baseado em sinais de equipamentos médicos; 8 classes diferentes; Conjunto de dados: 4000 exemplos (500 por classe); 70% para Treinamento (2.800; 350/classe), 15% para Validação (600; 75/classe), 15% para Operação (600; 75/classe); Rede neural desenvolvida em Matlab e treinada offline – 10 redes neurais treinadas; Agentes desenvolvidos em Java utilizando JADE; Agente responsável pela classificação comunica-se com a rede neural utilizando matlabcontrol. Filipe de Oliveira Saraiva 15 de maio de 2014 26 / 65
Futuros e Publicações Deseja-se expandir o número de classes a serem classificadas e também avaliar a possibilidade de alterações em classificadores nas casas, tornando-os mais “personalizáveis”. A publicação desse estudo também é um trabalho futuro. Filipe de Oliveira Saraiva 15 de maio de 2014 31 / 65
Introdução 2 Smart Grids 3 Sistemas Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 32 / 65
Problema Proposta de um sistema de controle de tensão em um ambiente smart grid, em tempo-real, condizente com a futura realidade dos sistemas elétricos de potência. Filipe de Oliveira Saraiva 15 de maio de 2014 33 / 65
Resolução Desenvolvido um sistema multiagente para simular os equipamentos e a comunicação entre eles, e um tomador de decisão fuzzy para realizar as ações de configuração utilizando bancos de capacitores. Sistema fuzzy trabalhará com 3 variáveis: V , ∆V e CB; Um agente ficará em uma barra do sistema lendo a tensão no momento e enviando para a subestação; Agente na subestação receberá os dados de tensão e tomará a decisão. Filipe de Oliveira Saraiva 15 de maio de 2014 34 / 65
Resolução Tabela : Regras linguísticas para variável tensão (V ) Regras Crítica-baixa V < 0.9 p.u. Precária 0.9 p.u. <= V < 0.93 p.u. Adequada 0.93 p.u. <= V <= 1.05 p.u. Crítica-alta V > 1.05 p.u. Filipe de Oliveira Saraiva 15 de maio de 2014 35 / 65
Resolução Tabela : Utilização de bancos de capacitores Bancos de Capacitores Grande (L - large) 1800 KVAR Médio (M - medium) 1200 KVAR Pequeno (S - small) 600 KVAR Zero (Z - zero) Não usar Filipe de Oliveira Saraiva 15 de maio de 2014 37 / 65
Resolução Tabela : Tabela com as regras fuzzy, suas entradas e o mapeamento para as respectivas saídas E (AND) V LC P A HC ∆V N L L M ZE LN M M S ZE ZE S S ZE ZE LP M M ZE ZE P S S ZE ZE Filipe de Oliveira Saraiva 15 de maio de 2014 38 / 65
Resolução Falso Agente Subestação iniciado Agente Subestação espera por mensagens do Agente Medidor Mensagens recebidas do Agente Medidor Se Agente Subestação recebeu mais que uma mensagem Calcula o desvio de tensão Realiza a tomada de decisão fuzzy Resultado sobre o uso de bancos de capacitores Verdadeiro Agente Medidor iniciado Agente Medidor faz medições da tensão Mensagens sobre a tensão medida são enviadas ao Agente Subestação Aguarda intervalo de tempo entre duas medições consecutivas Filipe de Oliveira Saraiva 15 de maio de 2014 39 / 65
Resolução Agente Subestação Agente Medidor Envia tensão medida para o Agente Subestação Mede a tensão Calcula o desvio de tensão e faz a tomada de decisão fuzzy Mede a tensão Envia tensão medida para o Agente Subestação Filipe de Oliveira Saraiva 15 de maio de 2014 40 / 65
e Publicações Pretende-se simular novos sistemas elétricos com um maior número de agentes medidores de tensão, requerendo a expansão do método de resolução. SARAIVA, F. O.; ASADA, A. C. C.; ASADA, E. N.. Multi-agent System for Voltage Control in Distribution Systems. In: XVII Internacional Conference on Intelligent System Applications to Power System (XVII ISAP), 2013, Tóquio. XVII Internacional Conference on Intelligent System Applications to Power System, 2013. Filipe de Oliveira Saraiva 15 de maio de 2014 42 / 65
Introdução 2 Smart Grids 3 Sistemas Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 43 / 65
Problema Em sistemas elétricos, a reconfiguração das chaves pode otimizar diversas medidas do sistema. Para a redução das perdas elétricas, foi modelado um sistema multiagente que ataca esse problema, de forma distribuída, em um ambiente de smart grid. Filipe de Oliveira Saraiva 15 de maio de 2014 44 / 65
Resolução Sistema multiagente com 3 agentes: subestação (SuA), carga (LoA) e chave (SwA); Sistema elétrico inicializa em uma dada configuração e vai otimizando com as iterações; Conceitos de coalizão; Filipe de Oliveira Saraiva 15 de maio de 2014 45 / 65
Resolução Início Configura estado inicial da chave Altera estado para o requerido por SuA Mensagem recebida do SuA Espera mensagem do SuA Filipe de Oliveira Saraiva 15 de maio de 2014 46 / 65
Resolução Início Aguarda mensagens dos LoA da coalizão Recebeu mensagens de todos os LoA? Cálculo de fluxo de potência Envia mensagem para todos os LoA na fronteita da coalizão Aguarda mensagens dos LoA na fronteira Assunto da mensagem Cálculo do fluxo de potência Guarda informação Recebeu mensagens de todos os LoA? Envia mensagem para todos os LoA da coalizão requerendo suas demandas Envia mensagem para SwA requisitando mudança de estado Envia resposta para o LoA Mensagem recebida Mensagem recebida Não Sim Sim LoA informando decisão LoA requisitando proposta Não Filipe de Oliveira Saraiva 15 de maio de 2014 47 / 65
Resolução Início LoA está na fronteira da coalisão? Realiza tomada de decisão sobre mudança de coalizão Espera por mensagem do SuA Mensagem recebida Pergunta ao LoA da coalizão vizinha sobre as perdas da coalizão e SuA ativo Envia mensagens para os SuA requerendo avaliações sobre mudança de coalizão Mensagens recebidas de todos os SuA? Espera por mensagens dos SuA proponentes Informa SuA proponentes sobre a tomada de decisão Mensagem recebida do SuA Não Mensagem recebida Sim Envia mensagem para SuA da coalizão informando demanda e posição Sim Não Filipe de Oliveira Saraiva 15 de maio de 2014 48 / 65
e Resultados Agentes desenvolvidos em Java utilizando JADE; Foram testados 2 sistemas: um com 11 barras e outro com 16 barras; Foram testadas diferentes soluções iniciais para os sistemas. Filipe de Oliveira Saraiva 15 de maio de 2014 51 / 65
e Publicações Para o futuro, pretende-se simular esse método em sistemas maiores e, também, realizar simulações com alterações dinâmicas nas cargas do sistema. SARAIVA, F. O.; ASADA, E. N.. Multi-agent Systems Applied to Topological Reconfiguration of Smart Power Distribution Systems. In: International Joint Conference on Neural Networks (IJCNN), 2014, Beijing. Proceedings of International Joint Conference on Neural Networks, 2014. Filipe de Oliveira Saraiva 15 de maio de 2014 60 / 65
3 Sistemas Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 61 / 65
de sistemas multiagentes para sistemas elétricos do futuro apresentou resultados positivos e mostrou-se promissora; Foi possível embasar melhor as tecnologias que poderão ser utilizadas para esse tipo de sistema elétrico; As possibilidades para trabalho futuro são muitas, e há campo para estudos sobre diversas aplicações. Filipe de Oliveira Saraiva 15 de maio de 2014 62 / 65
Sistemas Distribuídos, Sistemas Multiagentes e Smart Grids 4 Classificação de Cargas Não-Lineares em Sistemas de Distribuição Inteligentes 5 Controle de Tensão em Sistemas de Distribuição Inteligentes 6 Minimização de Perdas em Sistemas de Distribuição Inteligentes 7 Conclusões e Trabalhos Futuros 8 Apêndice – Publicações Filipe de Oliveira Saraiva 15 de maio de 2014 63 / 65
de Publicações Conferências Nacionais 1 (SBSE) Conferências Internacionais 5 (3 no ISGT-LA; 1 no ISAP; 1 no IJCNN) Periódicos Nacionais 0 Periódicos Internacionais 0 (em produção) Filipe de Oliveira Saraiva 15 de maio de 2014 64 / 65
Energia Elétrica Inteligentes Filipe de Oliveira Saraiva Laboratório de Análise de Sistemas de Energia Elétrica – LASEE Departamento de Engenharia Elétrica e Computação – SEL Escola de Engenharia de São Carlos – EESC Universidade de São Paulo – USP 15 de maio de 2014 Filipe de Oliveira Saraiva 15 de maio de 2014 65 / 65