Upgrade to Pro — share decks privately, control downloads, hide ads and more …

GT ICR - Nicolas Monnier

GT ICR - Nicolas Monnier

Avatar for François Orieux

François Orieux

April 28, 2025
Tweet

More Decks by François Orieux

Other Decks in Research

Transcript

  1. L’imagerie en radio interférométrie : Réduire le coût calculatoire avec

    la méthode Grid to Grid Présentation pour le GT-ICR Nicolas Monnier 28 Avril 2025
  2. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  3. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] Visibility (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  4. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] True Sky (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  5. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] Direction Independent Effects (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  6. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] Direction Dependent Effects (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  7. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] Observation Delay (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  8. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Nicolas Monnier 5
  9. Radio Interferometric Measurement Equation (RIME) Jones formulation [Hamaker, 1996; Smirnov,

    2011] (l, m, n): Direction of observation coordinate system (u, v, w): Visibility coordinate system Simplified formulation vpq(u, v) = lm x(l, m)e−2iπ(ul+vm) dl dm Nicolas Monnier 5
  10. Discretization of the RIME Forward problem SKA-Mid SKA-Low 197 Dishes

    110.000 Antennas v ∈ CM : Visibility vector x ∈ RP : Sky vector n ∈ CM : Gaussian noise Nicolas Monnier 6
  11. Discretization of the RIME Forward problem SKA-Mid SKA-Low 197 Dishes

    110.000 Antennas v ∈ CM : Visibility vector x ∈ RP : Sky vector n ∈ CM : Gaussian noise Instrumental Model H • Irregular sampling of the Fourier space : NUFFT • Prohibitive computational cost • Approximated by Fast Fourier Transform and sampling Nicolas Monnier 6
  12. Discretization of the RIME Forward problem v ∈ CM :

    Visibility vector x ∈ RP : Sky vector n ∈ CM : Gaussian noise F ∈ CP ×P : Fourier transform matrix S ∈ CM×P : Sampling operator (Degridding) Instrumental Model H • Irregular sampling of the Fourier space : NUFFT • Prohibitive computational cost • Approximated by Fast Fourier Transform and sampling Nicolas Monnier 6
  13. Synthesis imaging y ∈ CP : Dirty image F †

    ∈ CP ×P : Fourier transform matrix S† ∈ CP ×M : Sampling operator (Gridding) v ∈ CM : Visibility vector Nicolas Monnier 7
  14. Fourier synthesis problem • Incomplete sampling of the Fourier space

    v = SF x + n • Ill-posed inverse problem : infinity of solutions • Solution defines as minimizing a mix-criterion : well-posed problem x = arg min x ∥v − SF x∥2 2 + αR(x) • Iterative algorithms involve computation of the data fidelity gradient ∇J(x) = F †S†(v − SF x) Nicolas Monnier 9
  15. Iterative algorithm - Image Domain Gridder Nifty Gridder W-projection ...

    [Van der Tol, 2018] [Ye, 2022] [Cornwell, 2008] Compute gradient (Bottleneck) Nicolas Monnier 10
  16. Iterative algorithm - Generate next estimate Image Domain Gridder Nifty

    Gridder W-projection ... [Van der Tol, 2018] [Ye, 2022] [Cornwell, 2008] Compute gradient (Bottleneck) Nicolas Monnier 10
  17. Iterative algorithm - Generate next estimate Minor Cyles CLEAN Image

    Domain Gridder Nifty Gridder W-projection ... [Van der Tol, 2018] [Ye, 2022] [Cornwell, 2008] [Rau, 2011] [Högbom, 1974] [Schwab , 1984] Compute gradient (Bottleneck) Nicolas Monnier 10
  18. Iterative algorithm - Generate next estimate CASA DDFacet WSClean Purify

    .... Minor Cyles CLEAN Image Domain Gridder Nifty Gridder W-projection ... [Van der Tol, 2018] [Ye, 2022] [Cornwell, 2008] [Rau, 2011] [Högbom, 1974] [Schwab , 1984] [Jaeger, 2008] [Tasse, 2017] [Offringa, 2014] [Carillo, 2014] Compute gradient (Bottleneck) Nicolas Monnier 10
  19. Gradient computation optimization • High computing cost for Gridding and

    Degridding operators O(S†) = O(S) = MC2 supp • Gradient computation : ∇JST D (x) = F †S†(v − SF x) (1) ∇JG2G (x) = F †S†v − F †S†SF x (2) Fuse of S†S • Fast Holographic Deconvolution : H = S†S ∈ CP ×P , [Sullivan, 2012] • G2G : Reduce computational cost • G2G : Reduce memory footprint Nicolas Monnier 13
  20. Gridding operator decomposition S† = A†C†O† • Accumulation A† on

    Oversampled Fourier grid • Discrete convolution C† of KNp × KNp grid • Sub-sampling O† Nicolas Monnier 14
  21. Degridding operator decomposition S = ACO • Oversampling operator O

    • Discrete convolution C† of KNp × KNp grid • Mapping operator A Nicolas Monnier 15
  22. Grid to Grid method (G2G) [Monnier et al., 2022] Fusion

    of sub-operators A†A • A∗ is diagonal matrix • M′ non-zero coefficient in A∗ • M′ ≪ M • ∇JG2G(x) = ∇JST D(x) Nicolas Monnier 16
  23. G2G details • Implicit algorithm : no oversampled grid •

    Optimized GPU and multi-core CPU implementation • Precomputed convolution kernels • Method well-suited for compact configuration array • Generalisation of Baseline-Dependent Averaging (BDA) [Wijnholds, 2018; Atemkeng, 2016] Nicolas Monnier 17
  24. Experiments VLA test case Dataset : 7.7 GB - Image

    size : 1280 × 1280 pixels Mean Absolute Error MeanAE(K) = 1 P P i=0 |∇J(xi,K=63 ) − ∇J(xi,K )| Nicolas Monnier 18
  25. G2G implementations GPU implementation • GPU implementation based on [Romein,

    2012] [Merry, 2016] • Minimize device memory access • Shared memory reduction CPU and GPU comparison • CPU : Dual-socket Ice Lake, 64 cores • GPU : NVIDIA A100-SXM • GPU 10× faster than CPU Nicolas Monnier 19
  26. Memory footprint Compression ratio cα = M′ M Low cα

    is lower memory footprint and lower computational cost to compute ∇G2GJ(x) GB GB GB Nicolas Monnier 20
  27. GPU speedup State-of-the-art speedup comparison • Correction for non-coplanar array

    • STD : Standard w-projection gridder + degridder [Cornwell, 2008; Romein, 2012] • IDG : Image Domain Gridding [Van der Tol, 2018] Speedup = Time STD/IDG Time G2G 10 20 30 40 50 60 Oversampling factor K 0 25 50 75 100 125 Speedup for Csupp = 8 G2G/IDG G2G/STD Computation time : 10−2 –100 sec 10 20 30 40 50 60 Oversampling factor K 10 20 30 40 Speedup for Csupp = 64 G2G/IDG G2G/STD Computation time : 100 –101 sec Nicolas Monnier 22
  28. GPU implementation comparison Comparison metric • Fourier-point throughput to compute

    g from g • MFT : Million Fourier-point Throughput (in FP/s) MFT = #Fourier point Time (S† + S) × 10−6 Nicolas Monnier 23
  29. G2G Memory footprint K 8 16 24 32 40 64.

    STD single 7.7 7.7 7.7 7.7 7.7 7.7 double 15.4 15.4 15.4 15.4 15.4 15.4 G2G single 1.7 1.85 1.99 2.13 2.27 2.66 64 slices double 3.27 3.42 3.56 3.70 3.83 4.22 G2G single 0.17 0.32 0.46 0.60 0.73 1.12 1 slice double 0.19 0.34 0.48 0.62 0.76 1.15 Memory footprint needed to compute the gradient in GB. Nicolas Monnier 24