Upgrade to Pro — share decks privately, control downloads, hide ads and more …

【論文紹介】Automated Concatenation of Embeddings for...

Avatar for Kaito Sugimoto Kaito Sugimoto
September 06, 2021

【論文紹介】Automated Concatenation of Embeddings for Structured Prediction

研究室の日本語輪読会で発表したスライドです。
内容に問題や不備がある場合は、お手数ですが hellorusk1998 [at] gmail.com までご連絡お願いいたします。

Avatar for Kaito Sugimoto

Kaito Sugimoto

September 06, 2021
Tweet

More Decks by Kaito Sugimoto

Other Decks in Research

Transcript

  1. Automated Concatenation of Embeddings for Structured Prediction Wang et al.,

    ACL-IJCNLP 2021 Kaito Sugimoto Aizawa Lab. M1 2021/09/06 1 / 22
  2. どんな論文? • ACL-IJCNLP 2021 (long paper) • 脚注によると著者が Alibaba の

    R&D 部門にインターンした際に 行われた研究らしい 2 / 22
  3. どんな論文? • Structured Prediction タスク(入力文のラベルや構造を予測するタ スク)をより上手く解く研究 • Neural Architecture Search

    (NAS) のアイデアを活用し, 最適な Embedding の組み合わせ方を強化学習として学習する • NER や Dependency Parsing などの 6 つのタスクで SOTA 3 / 22
  4. 背景 • NER タスクなどにおいて, BERT の Embedding を単独で用いるよ りも他のモデルの Embedding

    と連結して使う方が精度が良くな ることが知られていた 1 1Strakova et al., Neural Architectures for Nested NER through Linearization (ACL 2019) 4 / 22
  5. 背景 • 沢山種類がある言語モデルの Embedding から最も良い組み合わ せを考えることで性能を上げられないだろうか? • しかし, L 種類の

    Embedding があった場合に, ありうる Embedding の連結の仕方は 2L − 1 通りあり, 全探索するのは困難 • タスクごとに効果的な Embedding の組み合わせが異なる可能性 も十分考えられる 5 / 22
  6. 背景 • そこで本研究では Neural Architecture Search (NAS) の考え方を取 り入れる •

    NAS においては通常, タスクごとにアーキテクチャ自体を探索す る. NLP でもこれまでタスクに応じた RNN や Transformer のより 良いアーキテクチャ探索の応用例がある • 今回は, モデルのアーキテクチャは探索しない(ラベル予測では BiLSTM-CRF で, 構造予測では BiLSTM-Biaffine で統一). その代わ り, モデルの入力である Embedding の組み合わせ方を探索する. 6 / 22
  7. 手法 L を候補の Embedding の総数とする. a = ( a1 a2

    ... aL ) をどの Embedding を使うか・使わないかの値とす る(強化学習における「行動」 ) 各 al は以下の 𝜽 = ( 𝜃1 𝜃2 ... 𝜃l ) をパラメータとする分布(強化学習 における「方策(Policy)関数」 )に従ってサンプリングされる PCtrl l (al ; 𝜃l ) = { 𝜎(𝜃l ) 1 − 𝜎(𝜃l ) 流れとしては, 前のステップで計算された 𝜽 をもとに a をサンプルし, モデルを訓練して accuracy を計算. その accuracy の結果をもとに 𝜽 を更新する. この繰り返し. 8 / 22
  8. 手法 accuracy の計算 前のステップで計算された 𝜽 をもとに a をサンプルし, どの Embedding

    を使うかを決める(1 ステップ目は全部使う ∀l al = 1). 以下の式のように, 使う Embedding 以外は 0 埋めされたベクトルが入 力になる. これを入力としてモデル(BiLSTM-CRF または BiLSTM-Biafiine)を訓 練し, evaluation データの accuracy を計算する. モデル自体は全ステップで同じものを使い続ける. 9 / 22
  9. 手法 𝜽 の更新 モデルの Accuracy を報酬としたとき, Vanilla Policy Gradient という強

    化学習の手法 2 により, 𝜽 は前のステップから以下の分だけ更新すれ ばよいと求まる(初期状態は 𝜽 = 0). (b は, この更新値の分散を小さくするための項で, 具体的にはその時 点までの accuracy の最高値を使えばよいとされる) 2『深層強化学習アルゴリズムまとめ』 https://qiita.com/shionhonda/items/ec05aade07b5bea78081 がわかりやすい 10 / 22
  10. 実験 以下の 6 種類のタスクを行う • NER • POS Tagging(品詞タグ付け) •

    Chunking("South Africa" のようなカタマリの抽出) • Aspect Extraction(品物のレビューなど, 意見や感情を含む文から それに関連する用語を抽出するタスク) • Syntactic Dependency Parsing • Semantic Dependency Parsing 12 / 22
  11. 実験 1. ベースラインとの比較 提案手法の探索がうまくいっているかを確かめるために, • 単純に全部の Embeddings を使った場合 • Random

    Search した場合(毎回ランダムに使う Embedding の組 み合わせを試す場合) と比較 Embedding の候補としては ELMo, Flair, BERT, Glove, fastText, Multilingual-BERT など 11 種類 (今回は fine-tuning は行わずに Embedding を生成する) 13 / 22
  12. 実験 2. SOTA との比較 実験 1. と異なり, モデルをタスクごとに fine-tuning してから

    Embedding を作成し, その組み合わせ方を提案手法で学習する Embedding の候補としてさらに XLNet と RoBERTa を追加. 16 / 22
  13. 実験 Embedding Weighting, Ensemble との比較 複数の Embedding の組み合わせ方は他にも考えられる • Embedding

    を選ぶか選ばないかを 0/1 で決めるのではなく, 連続 値の weight として考える All + weight 手法(つまり, Policy 関数で ある Sigmoid 関数の値をそのまま渡す) • それぞれの Embedding による予測結果の多数決で決める Ensemble 手法(この場合強化学習そのものが不要) これらに対して提案手法は優っているのか? 19 / 22
  14. 感想 • NAS の考え方を Embedding の組み合わせ方に応用するだけで, こ こまで多くのタスクで SOTA を出せるのは面白い

    • 入力文の構造予測以外のタスクでも使えそうかどうかは気になる • 一方で, SOTA レベルのパフォーマンスを出すためには前提とし て沢山の fine-tuning モデルが必要であり, 前準備が大変である. そ こも含めて Huggingface のライブラリに組み込まれると便利そう 22 / 22