Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Book 10その2 / deep learning book 1...
Search
himkt
January 29, 2018
Research
2
180
Deep Learning Book 10その2 / deep learning book 10 vol2
himkt
January 29, 2018
Tweet
Share
More Decks by himkt
See All by himkt
Linformer: paper reading
himkt
0
460
RoBERTa: paper reading
himkt
1
330
NLP SoTA 勉強会 / ner_2019
himkt
2
1.4k
自然言語処理 @ クックパッド / nlp at cookpad
himkt
1
500
Interpretable Machine Learning 6.3 - Prototypes and Criticisms
himkt
2
150
ニューラル固有表現抽出 / Neural Named Entity Recognition
himkt
3
700
ニューラル固有表現抽出器を実装してみる / PyNER
himkt
6
2.1k
Spacyでお手軽NLP / NLP with spacy
himkt
0
1k
ふわふわ系列ラベリング / ner 2018
himkt
5
850
Other Decks in Research
See All in Research
言語モデルの内部機序:解析と解釈
eumesy
PRO
34
15k
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
0
150
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
0
380
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
370
Weekly AI Agents News! 2月号 アーカイブ
masatoto
1
150
知識強化言語モデルLUKE @ LUKEミートアップ
ikuyamada
0
370
The Economics of Platforms 輪読会 第1章
tomonatu8
0
160
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
310
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
560
NLP2025参加報告会 LT資料
hargon24
1
260
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
470
小ねぎ調製位置検出のためのインスタンスセグメンテーション
takuto_andtt
0
110
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Fireside Chat
paigeccino
37
3.4k
Scaling GitHub
holman
459
140k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Building Flexible Design Systems
yeseniaperezcruz
329
38k
Statistics for Hackers
jakevdp
798
220k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Bash Introduction
62gerente
611
210k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Optimising Largest Contentful Paint
csswizardry
36
3.2k
How to Think Like a Performance Engineer
csswizardry
23
1.5k
Transcript
&DIP4UBUF/FUXPSLT&YQMJDJU.FNPSZ IJNLU!य़ΤϦΞ DEEP LEARNING BOOK 4FRVFODF.PEFMJOH3FDVSSFOUBOE3FDVSTJWF/FUT
&DIP4UBUF/FUXPSLT w 3//ʹֶ͓͍ͯश͕େมͳύϥϝʔλ w ӅΕӅΕ SFDVSSFOUXFJHIUT w ೖྗӅΕ JOQVUXFJHIUT
w &DIP4UBUF/FUXPSL w ӅΕӅΕॏΈΛݻఆ w ֶश͢Δͷʜ w ೖྗӅΕ JOQVUXFJHIUT w ӅΕग़ྗ PVUQVUXFJHIUT
&DIP4UBUF/FUXPSLT IUUQXXXTDIPMBSQFEJBPSHBSUJDMF&DIP@TUBUF@OFUXPSL
,FSOFMNBDIJOFͱͷྨࣅੑ w Χʔωϧ͕ͬͯΔ͜ͱͬͯʁ w ҙͷ͞ͷܥྻΛݻఆͷϕΫτϧࣸ͢ w ݻఆͷϕΫτϧΛ༻͍ͯྨث͕Λղ͘ w ͜ͷܗͷ߹ɼֶशͷج४ͷઃܭ͕༰қͰ͋Δ w
ग़ྗઢܗճؼͷ߹.4&ͰֶशͰ͖Δ w &4/TೖྗΛԿΒ͔ͷϕΫτϧʹࣸ͢ૢ࡞Λ͍ͯ͠Δ w தͷॏΈݻఆ͍ͯ͠Δ ͍͔ʹաڈͷใΛ๛ʹؚΉදݱ͕ಘΒΕΔ ॏΈΛઃఆ͢ΕΑ͍͔ʁ શવҙຯ͕Θ͔Βͣʜ 3//ΛಈతγεςϜͱΈͳ͢ γεςϜ͕҆ఆ͢ΔΑ͏ͳॏΈΛઃఆ͢Δ
-FBLZ6OJUTBOE0UIFS4USBUFHJFTGPS.VMUJQMF5JNF4DBMF w աڈͷใΛ͑ΔͨΊͷ "EEJOH4LJQ$POOFDUJPOTUISPVHI5JNF w ޯͷফࣦͷ͕͘ͳΔ w രൃݩͷ3//ͱಉ͡Ͱൃੜ͢Δ
-FBLZ6OJUTBOEB4QFDUSVNPG%J⒎FSFOU5JNF4DBMFT w աڈͷใΛͲͷఔ͔͢Λ੍ޚ͢Δ 3FNPWJOH$POOFDUJPOT w ͍࣌ࠁͰͷґଘΛ͍࣌ࠁͰͷґଘʹஔ͖͑Δ
-FBLZ6OJUT w աڈͷใΛͲͷ͘Β͍͔͢Λௐ͢Δ w ҠಈฏۉͷΑ͏ͳ;Δ·͍Λ͢Δ w Ћ͕େ͖͍ ʹ͍ۙ աڈͷใΛΑΓอଘ͢Δ w
Ћ͕খ͍͞ ʹ͍ۙ աڈͷใΛ͙͢ʹࣺͯΔ w Ћదʹܾఆ͢ΔϋΠύʔύϥϝʔλ µ(t) ↵µ(t 1) + (1 ↵)v(t)
-POH4IPSU5FSN.FNPSZ w ࣗݾϧʔϓΛಋೖ͢Δ͜ͱͰޯ͕ফ͑ʹ͘͘͢Δ IUUQDPMBIHJUIVCJPQPTUT6OEFSTUBOEJOH-45.T 3// -45.
(BUFE3FDVSSFOU6OJUT w ٙ-45.ෳࡶ͗͢ΔͷͰͳ͍͔ʁ w (36-45.ΑΓߴɾ-45.ͱಉͷੑೳ w ͲͪΒ͕ྑ͍͔λεΫʹΑΔ -45. (36
IUUQTJTBBDDIBOHIBVHJUIVCJP-45.BOE(36'PSNVMB4VNNBSZ
ࣜతʹൺֱ͢ΔʢόΠΞεΛແࢹʣ -45. (36 zt = (xtUz + ht 1Wz)
rt = (xtUr + ht 1Wr) ˜ ht = tanh ⇣ xt + Uh + (rt ht 1)Wh ⌘ ht = (1 zt) ht 1 + zt ˜ ht it = (xtUi + ht 1Wi) ft = (xtUf + ht 1Wf ) ot = (xtUo + ht 1Wg) ˜ Ct = tanh (xtUg + ht 1Wg) Ct = (ft Ct 1 + it ˜ Ct) ht = tanh (Ct) ot (36Ͱೖྗήʔτͱ٫ήʔτ͕౷߹͞Ε͍ͯΔ
0QUJNJ[BUJPOGPS-POH5FSN%FQFOEFODJFT w 3//Λϕʔεͱͨ͠χϡʔϥϧωοτϫʔΫͷඍ w ඇৗʹେ͖ͳΛͱΔPS w ඇৗʹখ͞ͳΛͱΔ w ಛʹɼޯ͕ඇৗʹେ͖ͳͱ͖ʹͲ͏͢Εྑ͍͔ʁ
ޯͷΫϦοϐϯά ޯͷਖ਼نԽ
$MJQQJOH(SBEJFOU w ޯ͕ඇৗʹ େ͖͍cখ͍͞ ͱʁ w ͍͍ͩͨฏΒ͚ͩͲͱ͖Ͳ͖֑͕͋Δ IUUQXXXEFFQMFBSOJOHCPPLPSHMFDUVSF@TMJEFTIUNM
$MJQQJOH(SBEJFOU w ޯ๏ϕʔεͷख๏ʹΑΔͱʜ w ֑ͷपΓͰ͕ਧ͖ඈΜͰ͠·͏ ޯരൃ w ޯ͕େ͖͘ͳΓ͗ͨ͢ΒޯͷϊϧϜͰׂΔ w
ޯΛHͱͯ͠ʜ w WϋΠύʔύϥϝʔλ ࣗવݴޠॲཧͩͱ͕ଟ͍ g ( gv ||g|| (||g|| > v) g (otherwise)
3FHVMBSJ[JOHUP&ODPVSBHF*OGPSNBUJPO'MPX w ਖ਼ଇԽ߲Λಋೖ͢Δ͜ͱͰʮJOGPSNBUJPOqPXʯΛଅਐ w ͜ͷ߲ͷܭࢉ͍͕͠ɼۙࣅ͕ఏҊ͞Ε͍ͯΔ w $MJQQJOHͱΈ߹ΘͤΔ͜ͱͰهԱͰ͖Δڑ͕৳ͼΔ ⌦ =
X t ⇣||(rh(t) L) @h(t) @h(t 1) || ||(rh(t) L)|| 1 ⌘2
&YQMJDJU.FNPSZ w χϡʔϥϧωοτϫʔΫʜ w ҉తͳใͷอ࣋ಘҙ w ໌ࣔతͳใ ࣄ࣮ ͷอ࣋ۤख w
໌ࣔతͳใΛอ࣋͠ɼਪʹ׆༻͢Δߏ ʢϫʔΩϯάϝϞϦͷಋೖʣ w .FNPSZ/FUXPSLT w /FVSBM5VSJOH.BDIJOF
"TDIFNBUJDPGBOFUXPSLXJUIBOFYQMJDJUNFNPSZ IUUQXXXEFFQMFBSOJOHCPPLPSHMFDUVSF@TMJEFTIUNM
"TDIFNBUJDPGBOFUXPSLXJUIBOFYQMJDJUNFNPSZ w ਖ਼֬ͳϝϞϦͷΞυϨεΛग़ྗ͢Δͷ͍͠ w ଟ͘ͷϝϞϦηϧͷॏΈ͖ฏۉΛͱΔ w ॏΈιϑτϚοΫεͳͲͰ࡞Δ ʢͰ͖Δ͚ͩҰՕॴͷϝϞϦΛࢀর͢ΔΑ͏ʹʣ w ϝϞϦηϧεΧϥΑΓϕΫτϧͷํ͕ྑ͍
w ίϯςϯπϕʔεΞυϨογϯά͕ՄೳʹͳΔ w ʮl8FBMMMJWFJOBZFMMPXTVCNBSJOFzΛؚΉՎࢺΛݟ͚ͭΔʯ w ʢϩέʔγϣϯϕʔεΞυϨογϯάͱʁʣ w ʮεϩοτ347ʹ֨ೲ͞Ε͍ͯΔՎࢺΛऔಘ͢Δʯ w ʢΞυϨογϯάΞςϯγϣϯͱಉ͡ܗࣜʣ