Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第160回 雲勉 それ、AWS Step Functions で置き換えれん?
Search
iret.kumoben
May 02, 2025
Technology
0
97
第160回 雲勉 それ、AWS Step Functions で置き換えれん?
下記、勉強会での資料です。
https://youtu.be/q48oBNnbj64
iret.kumoben
May 02, 2025
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第174回 雲勉 Google Agentspace × ADK Vertex AI Agent Engineにデプロイしたエージェントを呼び出す
iret
0
21
第173回 雲勉 ノーコードで生成 AI アプリを構築!Google Cloud AI Applications(旧 Vertex AI Agent Builder)入門
iret
0
48
第170回 雲勉 Lyria が切り拓く音楽制作の未来
iret
1
27
第169回 雲勉 AWS WAF 構築 RTA
iret
0
35
第168回 雲勉 JITNAの使い方とハマったポイントについて語る回
iret
0
39
第167回 雲勉 エージェント開発を加速する Agent Development Kit 入門
iret
1
52
第166回 雲勉 コードを読んで理解する AWS Amplify Gen2 Backend
iret
0
45
第165回 雲勉 Google Agentspace について
iret
0
65
第164回 雲勉 Agent Development Kit と MCP Toolbox for Databases で MCP 連携してみた
iret
1
130
Other Decks in Technology
See All in Technology
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
1
200
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
120
研究開発と製品開発、両利きのロボティクス
youtalk
1
520
【初心者向け】ローカルLLMの色々な動かし方まとめ
aratako
7
3.4k
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.5k
OCI Oracle Database Services新機能アップデート(2025/06-2025/08)
oracle4engineer
PRO
0
110
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
220
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
400
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
220
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
440
DDD集約とサービスコンテキスト境界との関係性
pandayumi
3
280
Kiroと学ぶコンテキストエンジニアリング
oikon48
6
9.9k
Featured
See All Featured
Writing Fast Ruby
sferik
628
62k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Optimizing for Happiness
mojombo
379
70k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Designing Experiences People Love
moore
142
24k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Being A Developer After 40
akosma
90
590k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How GitHub (no longer) Works
holman
315
140k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
2025/4/27 アイレット株式会社 アジャイル事業部 IoTセクション 第160回 雲勉 それ、AWS Step Functions で置き換えれん?
2 自己紹介 名前:北野 涼平(ヤマダ) 所属:アジャイル事業部 IoTS IoTBG 趣味:LT、プリン、読書 愛S:Figma、AWS Fault
Injection Service プロフィール
3 AWS Lambda 使ってますか?
4 AWS Lambda 使ってますか? • サーバーレス • サーバーを管理することなく、高可用性と耐障害性を実現 • 組み込みのログ記録・モニタリング機能
• スケーリング • 従量課金制 →色々あると思います AWS Lambda を使うメリット
5 デメリットはあるのか?
6 AWS Lambda 使ってますか? • プログラミング言語の知識が必要 • 高い専門性 • ランタイムのサポート廃止(Python3.9も2025年11月廃止予定)
• 複数の AWS Lambda を使用する場合は複雑になる • 実行時間の上限 →中でもランタイムのサポートは思っているより早いです AWS Lambda を使うデメリット
7 なるべくなら使いたくない…!
8 AWS Step Functions に 置き換えられないか考えてみよう!
9 アジェンダ • AWS Step Functions を採用するメリットについて • JSONata について
• 実際に使ってみた話 今回お話すること • 細かい設定値 • プロンプトなど 話さないこと
10 AWS Step Functions とは
11 AWS Step Functions とは • AWS提供のマネージドサービス • ワークフローとして各サービスを連携できる •
非常に多くのサービスに対応 <北野の偏見> Map処理したい時とか、 複雑な処理分岐にしか使ってはいけないのでは? AWS Step Functions とは ソンナコトナイヨ!
12 AWS Step Functions とは • 処理の可視化 • ワークフローがとっても視覚的! •
プログラミング言語の知識がなくても見れる(?) • ちょっとした処理は JSONata が吸収 • 自動スケーリング • ランタイムのサポートを気にしなくていい! • 非同期処理を作りやすい • AWS Lambda や Amazon API Gateway の タイムアウトから解放 AWS Step Functions のメリット
13 実際に使ってみる
14 実際に使ってみる 構成図 実行時間に一抹の不安
15 実際に使ってみる 構成図 APIのレスポンスはすぐ来る
16 実践
17 実践 • フローが目で見える • 関連サービスがわかりやすい 処理の可視化(ワークフロー)
18 実践 • JSONata でちょっとした処理を吸収 • プロンプトを工夫したり、結果を入れる際の一手間など 処理の可視化(JSONata)
19 実践 JSONata とは • AWS Step Functions には2024年11月に追加 •
JSONデータの軽量クエリおよび変換言語 • JSONオブジェクトの複雑なデータ操作が可能 • フローの中間ステートが不必要になった! 処理の可視化(JSONata)
20 実践 • エラーによって細かく制御が可能 • Amazon DynamoDB でエラーが あったら Fail
、なければ API 呼び出しが視覚的 処理の可視化(エラーハンドリング) タイムアウトなどのエラーに よって分岐を指定できる
21 実践 処理の可視化(エラーハンドリング) 通ってきた処理が色づく アクションをクリック して原因を究明
22 実践 • アクションを選択 • AWS Lambda の時のように 言語を気にしない ランタイムのサポート
23 実践 • curl で API を実行 • わざわざ書くほどのことでもないが、Slack に通知がきた
• 生成AIなど、実行時間を予測しづらい時に◎ 非同期処理
24 まとめ
25 まとめ • 多くのサービスに対応し、処理の分岐も作りやすい • ワークフローを視覚的に表現 • エラーハンドリングも見やすく、原因調査もしやすい • 生成AIとの相性がよい
• 非同期処理 • Amazon Bedrock アクションも豊富 • 簡単な処理は JSONata が吸収 • プログラム風だが、慣れれば簡単(?) AWS Step Functions を使ってみた
26 まとめ もちろん AWS Lambda や別のアプローチのほうが良い場合も ありますが、AWS Step Functions を使用するメリットを理解
し、採用を検討してみてください。 私は並行処理や AWS Lambda を複数扱うためでしか使わない 方がいいのかなと思っていました。実際に触ってみるとワー クフローは視覚的であり、アクションも豊富でむしろ簡単な 処理にこそ向いているのではと思ったほどです! AWS Step Functions を使ってみた
27 まとめ お話したこと • AWS Step Functions を採用するメリットについて • JSONata
について • 実際に使ってみた話 今回作成した構成について、 iret.media にて詳細に記事にしようと思います! AWS Step Functions を使ってみた
28 ありがとうございました!