Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Altair Tutorial Intro - PyCon 2018

Altair Tutorial Intro - PyCon 2018

The intro slides to my tutorial on Altair and Vega-Lite from PyCon 2018.

Full materials and video link available at https://github.com/altair-viz/altair-tutorial

Jake VanderPlas

May 12, 2018
Tweet

More Decks by Jake VanderPlas

Other Decks in Technology

Transcript

  1. @jakevdp Jake VanderPlas Jake VanderPlas @jakevdp PyCon 2018 Exploratory Data

    Visualization with Altair Materials at http://github.com/altair-viz/altair-tutorial
  2. Building Blocks of Visualization: 1. Data 2. Transformation 3. Marks

    4. Encoding – mapping from fields to mark properties 5. Scale – functions that map data to visual scales 6. Guides – visualization of scales (axes, legends, etc.)
  3. @jakevdp Jake VanderPlas import matplotlib.pyplot as plt import numpy as

    np x = np.random.randn(1000) y = np.random.randn(1000) color = np.arange(1000) plt.scatter(x, y, c=color) plt.colorbar() Plotting with Matplotlib
  4. @jakevdp Jake VanderPlas Plotting with Matplotlib Strengths: - Designed like

    MatLab: switching was easy For more on the historical perspective, see https://speakerdeck.com/jakevdp/pydata-101
  5. @jakevdp Jake VanderPlas Plotting with Matplotlib Strengths: - Designed like

    MatLab: switching was easy - Many rendering backends
  6. @jakevdp Jake VanderPlas Plotting with Matplotlib Strengths: - Designed like

    MatLab: switching was easy - Many rendering backends - Can reproduce just about any plot (with a bit of effort)
  7. @jakevdp Jake VanderPlas Plotting with Matplotlib Strengths: - Designed like

    MatLab: switching was easy - Many rendering backends - Can reproduce just about any plot (with a bit of effort) - Well-tested, standard tool for 15 years
  8. @jakevdp Jake VanderPlas Plotting with Matplotlib Strengths: - Designed like

    MatLab: switching was easy - Many rendering backends - Can reproduce just about any plot with a bit of effort - Well-tested, standard tool for 15 years Weaknesses: - API is imperative & often overly verbose - Poor/no support for interactive/web graphs
  9. @jakevdp Jake VanderPlas import matplotlib.pyplot as plt import numpy as

    np x = np.random.randn(1000) y = np.random.randn(1000) color = np.arange(1000) plt.scatter(x, y, c=color) plt.colorbar() Plotting with Matplotlib
  10. @jakevdp Jake VanderPlas from vega_datsets import data iris = data('iris')

    iris.head() Data in column-oriented format; i.e. rows are samples, columns are features Statistical Visualization
  11. @jakevdp Jake VanderPlas color_map = dict(zip(iris.species.unique(), ['blue', 'green', 'red'])) for

    species, group in iris.groupby('species'): plt.scatter(group['petalLength'], group['sepalWidth'], color=color_map[species], alpha=0.3, edgecolor=None, label=species) plt.legend(frameon=True, title='species') plt.xlabel('petalLength') plt.ylabel('sepalLength') Statistical Visualization: Grouping
  12. @jakevdp Jake VanderPlas color_map = dict(zip(iris.species.unique(), ['blue', 'green', 'red'])) for

    species, group in iris.groupby('species'): plt.scatter(group['petalLength'], group['sepalWidth'], color=color_map[species], alpha=0.3, edgecolor=None, label=species) plt.legend(frameon=True, title='species') plt.xlabel('petalLength') plt.ylabel('sepalLength') Statistical Visualization: Grouping 1. Data? 2. Transformation? 3. Marks? 4. Encoding? 5. Scale? 6. Guides?
  13. @jakevdp Jake VanderPlas color_map = dict(zip(iris.species.unique(),['blue', 'green', 'red'])) n_panels =

    len(color_map) fig, ax = plt.subplots(1, n_panels, figsize=(n_panels * 5, 3), sharex =True, sharey=True) for i, (species, group) in enumerate(iris.groupby('species')): ax[i].scatter(group['petalLength'], group['sepalWidth'], color =color_map[species], alpha =0.3, edgecolor=None, label =species) ax[i].legend(frameon=True, title='species') plt.xlabel('petalLength') plt.ylabel('sepalLength') Statistical Visualization: Faceting
  14. @jakevdp Jake VanderPlas color_map = dict(zip(iris.species.unique(),['blue', 'green', 'red'])) n_panels =

    len(color_map) fig, ax = plt.subplots(1, n_panels, figsize=(n_panels * 5, 3), sharex =True, sharey=True) for i, (species, group) in enumerate(iris.groupby('species')): ax[i].scatter(group['petalLength'], group['sepalWidth'], color =color_map[species], alpha =0.3, edgecolor=None, label =species) ax[i].legend(frameon=True, title='species') plt.xlabel('petalLength') plt.ylabel('sepalLength') Statistical Visualization: Faceting Problem: We’re mixing the what with the how
  15. @jakevdp Jake VanderPlas Toward a well-motivated Declarative Visualization Declarative -

    Specify What should be done. - Separates Specification from Execution - “Map <x> to a position, and <y> to a color” Imperative - Specify How something should be done. - Specification & Execution intertwined. - “Put a red circle here and a blue circle here” Declarative visualization lets you think about data and relationships, rather than incidental details.
  16. @jakevdp Jake VanderPlas Toward a well-motivated Declarative Visualization Declarative -

    Specify What should be done. - Separates Specification from Execution - “Map <x> to a position, and <y> to a color” Imperative - Specify How something should be done. - Specification & Execution intertwined. - “Put a red circle here and a blue circle here” Declarative visualization lets you think about data and relationships, rather than incidental details.
  17. @jakevdp Jake VanderPlas Altair for Statistical Visualization import altair as

    alt from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength', y='sepalWidth', color='species' )
  18. @jakevdp Jake VanderPlas Encodings are Flexible: import altair as alt

    from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength', y='sepalWidth', color='species', column='species' )
  19. @jakevdp Jake VanderPlas Altair is Interactive import altair as alt

    from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength', y='sepalWidth', color='species' ).interactive()
  20. @jakevdp Jake VanderPlas See the rest of the tutorial content

    at http://github.com/altair-viz/altair-tutorial
  21. @jakevdp Jake VanderPlas Basics of an Altair Chart import altair

    as alt from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='sepalWidth:Q', color='species:N' )
  22. @jakevdp Jake VanderPlas import altair as Chart from vega_datasets import

    data iris = data.iris() alt.Chart(iris).mark_circle().encode( x='petalLength:Q', y='sepalWidth:Q', color='species:N' ) Anatomy of an Altair Chart iris = data.iris() alt.Chart(iris) Chart assumes tabular, column-oriented data Supports pandas dataframes, or CSV/TSV/JSON URLs
  23. @jakevdp Jake VanderPlas import altair as Chart from vega_datasets import

    data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='sepalWidth:Q', color='species:N' ) Anatomy of an Altair Chart mark_point() Chart uses one of several pre-defined marks: - point - line - bar - area - rect - geoshape - text - circle - square - rule - tick
  24. @jakevdp Jake VanderPlas import altair as Chart from vega_datasets import

    data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='sepalWidth:Q', color='species:N' ) Basics of an Altair Chart - Encodings map visual channels to data columns, - Channels are automatically adjusted based on data type (N, O, Q, T) Available channels: - Position (x, y) - Facet (row, column) - color - shape - size - text - opacity - stroke - fill - latitude/longitude encode( x='petalLength:Q', y='sepalWidth:Q', color='species:N'
  25. @jakevdp Jake VanderPlas Anatomy of an Altair Chart { "data":

    {"values": [...]}, "encoding": { "color": {"field": "species", "type": "nominal"}, "x": {"field": "petalLength", "type": "quantitative"}, "y": {"field": "sepalWidth", "type": "quantitative"} }, "mark": "point" } import altair as alt from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='sepalWidth:Q', color='species:N' ).to_json() Altair produces specifications following the Vega-Lite grammar. http://vega.github.io/vega-lite/
  26. Jake VanderPlas Bar Chart: d3 var margin = {top: 20,

    right: 20, bottom: 30, left: 40}, width = 960 - margin.left - margin.right, height = 500 - margin.top - margin.bottom; var x = d3.scale.ordinal() .rangeRoundBands([0, width], .1); var y = d3.scale.linear() .range([height, 0]); var xAxis = d3.svg.axis() .scale(x) .orient("bottom"); var yAxis = d3.svg.axis() .scale(y) .orient("left") .ticks(10, "%"); var svg = d3.select("body").append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); d3.tsv("data.tsv", type, function(error, data) { if (error) throw error; x.domain(data.map(function(d) { return d.letter; })); y.domain([0, d3.max(data, function(d) { return d.frequency; })]); svg.append("g") .attr("class", "x axis") .attr("transform", "translate(0," + height + ")") .call(xAxis); svg.append("g") .attr("class", "y axis") .call(yAxis) .append("text") .attr("transform", "rotate(-90)") .attr("y", 6) .attr("dy", ".71em") .style("text-anchor", "end") .text("Frequency"); svg.selectAll(".bar") .data(data) .enter().append("rect") .attr("class", "bar") .attr("x", function(d) { return x(d.letter); }) .attr("width", x.rangeBand()) .attr("y", function(d) { return y(d.frequency); }) .attr("height", function(d) { return height - y(d.frequency); }); }); function type(d) { d.frequency = +d.frequency; return d; } D3 is a Javascript package that streamlines manipulation of objects on a webpage.
  27. Jake VanderPlas Bar Chart: Vega { "width": 400, "height": 200,

    "padding": {"top": 10, "left": 30, "bottom": 30, "right": 10}, "data": [ { "name": "table", "values": [ {"x": 1, "y": 28}, {"x": 2, "y": 55}, {"x": 3, "y": 43}, {"x": 4, "y": 91}, {"x": 5, "y": 81}, {"x": 6, "y": 53}, {"x": 7, "y": 19}, {"x": 8, "y": 87}, {"x": 9, "y": 52}, {"x": 10, "y": 48}, {"x": 11, "y": 24}, {"x": 12, "y": 49}, {"x": 13, "y": 87}, {"x": 14, "y": 66}, {"x": 15, "y": 17}, {"x": 16, "y": 27}, {"x": 17, "y": 68}, {"x": 18, "y": 16}, {"x": 19, "y": 49}, {"x": 20, "y": 15} ] } ], "scales": [ { "name": "x", "type": "ordinal", "range": "width", "domain": {"data": "table", "field": "x"} }, { "name": "y", "type": "linear", "range": "height", "domain": {"data": "table", "field": "y"}, "nice": true } ], "axes": [ {"type": "x", "scale": "x"}, {"type": "y", "scale": "y"} ], "marks": [ { "type": "rect", "from": {"data": "table"}, "properties": { "enter": { "x": {"scale": "x", "field": "x"}, "width": {"scale": "x", "band": true, "offset": -1}, "y": {"scale": "y", "field": "y"}, "y2": {"scale": "y", "value": 0} }, "update": { "fill": {"value": "steelblue"} Vega is a detailed declarative specification for visualizations, built on D3.
  28. Jake VanderPlas Bar Chart: Vega-Lite { "description": "A simple bar

    chart with embedded data.", "data": { "values": [ {"a": "A","b": 28}, {"a": "B","b": 55}, {"a": "C","b": 43}, {"a": "D","b": 91}, {"a": "E","b": 81}, {"a": "F","b": 53}, {"a": "G","b": 19}, {"a": "H","b": 87}, {"a": "I","b": 52} ] }, "mark": "bar", "encoding": { "x": {"field": "a", "type": "ordinal"}, "y": {"field": "b", "type": "quantitative"} } } Vega-Lite is a simpler declarative specification aimed at statistical visualization.
  29. Jake VanderPlas Bar Chart: Altair Altair is a Python API

    for creating Vega-Lite specifications.
  30. 2D Position Size Color Value Texture Color Hue Angle Shape

    Bertin’s Semiology of Graphics (1967)
  31. Suitable for ordered data (also length, area, volume, etc.) Suitable

    for unordered data (Also transparancy, blur/focus, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967)
  32. Suitable for unordered data (Also transparancy, blur/focus, etc.) Suitable for

    ordered data (also length, area, volume, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967)
  33. Suitable for unordered data (Also transparancy, blur/focus, etc.) Suitable for

    ordered data (also length, area, volume, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967) Order & Quantity
  34. Suitable for unordered data (Also transparancy, blur/focus, etc.) Suitable for

    ordered data (also length, area, volume, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967) Order & Quantity (less so)
  35. Suitable for unordered data (Also transparancy, blur/focus, etc.) Suitable for

    ordered data (also length, area, volume, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967) Order... Quantity?
  36. Suitable for ordered data (also length, area, volume, etc.) Suitable

    for unordered data (Also transparancy, blur/focus, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967) Order, Quantity
  37. Suitable for ordered data (also length, area, volume, etc.) Suitable

    for unordered data (Also transparancy, blur/focus, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967) Order, Quantity
  38. Suitable for ordered data (also length, area, volume, etc.) Suitable

    for unordered data (Also transparancy, blur/focus, etc.) 2D Position Size Color Value Texture Color Hue Angle Shape Bertin’s Semiology of Graphics (1967) Bertin’s “Levels of Organization” Position N O Q Size N O Q Color Value N O Q Texture N O Color Hue N Angle N Shape N N = Nominal (named category) O = Ordinal (ordered category) Q = Quantitative (ordered continuous)
  39. Key: Visualization concepts should map directly to visualization implementation. Great

    resource is Jeff Heer’s viz course: https://courses.cs.washington.edu/courses/cse512/16sp/