Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

Python's Data Science Stack (JSM 2016)

Python's Data Science Stack (JSM 2016)

The Python language was not originally designed with scientific computing in mind, but its beauty and ease-of-use have inspired the development of a powerful and mature ecosystem of scientific and data-focused computing tools. This talk will give a broad introduction to the essential tools for data analysis and visualization in Python, as well as a look at recent developments and new tools on the horizon – including Altair, the new declarative visualization library for Python built on Vega-Lite.

Jake VanderPlas

July 31, 2016
Tweet

More Decks by Jake VanderPlas

Other Decks in Programming

Transcript

  1. #JSM2016 Jake VanderPlas Python is not a statistical computing language!

    . . . and this may be its greatest strength as a language for statistical computing.
  2. #JSM2016 Jake VanderPlas Cython = C + Python Super-set of

    the Python language that allows easy interfacing with C & Fortran libraries (e.g. BLAS, LAPACK, etc.) and also fast Python code. Drives many of the packages in the data science stack.
  3. #JSM2016 Jake VanderPlas SciPy Provides an interface to common scientific

    computing Tasks, including wrappers of many NetLib packages.
  4. #JSM2016 Jake VanderPlas SciPy Provides an interface to common scientific

    computing Tasks, including wrappers of many NetLib packages. List from http://docs.scipy.org/doc/scipy/reference/ • Special functions (scipy.special) • Integration (scipy.integrate) • Optimization (scipy.optimize) • Interpolation (scipy.interpolate) • Fourier Transforms (scipy.fftpack) • Signal Processing (scipy.signal) • Linear Algebra (scipy.linalg) • Sparse Eigenvalue Problems with ARPACK • Compressed Sparse Graph Routines (scipy.sparse.csgraph) • Spatial data structures and algorithms (scipy.spatial) • Statistics (scipy.stats) • Multidimensional image processing (scipy.ndimage) • File IO (scipy.io)
  5. #JSM2016 Jake VanderPlas Pandas R-inspired DataFrames & associated functionality (data

    munging & cleaning, group-by & transformations, and much more)
  6. #JSM2016 Jake VanderPlas Pandas R-inspired DataFrames & associated functionality (data

    munging & cleaning, group-by & transformations, and much more)
  7. #JSM2016 Jake VanderPlas Recent-ish Developments - Dask: Parallelization of Data

    & Computation - Numba: LLVM compilation of Python code - Jupyter Lab: interactive & extensible polyglot development environment - Altair: Declarative Visualization based on Vega-Lite
  8. #JSM2016 Jake VanderPlas Dask: Parallel Computation for Distributed Arrays &

    DataFrames With minimal changes to your NumPy & Pandas expressions, parallelize your computations over distributed data! http://dask.pydata.org/
  9. #JSM2016 Jake VanderPlas http://dask.pydata.org/ Dask: Parallel Computation for Distributed Arrays

    & DataFrames With minimal changes to your NumPy & Pandas expressions, parallelize your computations over distributed data! “Task Graph”
  10. #JSM2016 Jake VanderPlas With a simple decorator, Python is compiled

    to LLVM and executes at near C/Fortran speed! http://numba.pydata.org/ Still some features missing, but very promising (see my blog posts for some examples). Numba: JIT-compilation of Python code
  11. #JSM2016 Jake VanderPlas Numba: JIT-compilation of Python code With a

    simple decorator, Python is compiled to LLVM and executes at near C/Fortran speed! http://numba.pydata.org/ Still some features missing, but very promising (see my blog posts for some examples). 20x speedup!
  12. #JSM2016 Jake VanderPlas Jupyter Lab Jupyter beyond notebooks: extensible cross-platform

    interactive computing environment (release soon!) http://jupyter.org Link to Animation
  13. #JSM2016 Jake VanderPlas The Visualization story in Python is somewhat

    confusing . . . - Matplotlib - Bokeh - Plotly - Seaborn - Holoviews - VisPy - ggplot - pandas plot - Lightning Each library has strengths, but arguably none is yet the “killer viz app” for Data Science.
  14. #JSM2016 Jake VanderPlas Most Useful for Data Science is Declarative

    Visualization Declarative - Specify What should be done - Details determined automatically - Separates Specification from Execution Imperative - Specify How something should be done. - Must manually specify plotting steps - Specification & Execution intertwined. Declarative visualization lets you think about data and relationships, rather than incidental details.
  15. #JSM2016 Jake VanderPlas Enter Altair. Declarative statistical visualization library for

    Python, driven by Vega-Lite http://github.com/ellisonbg/altair Collaboration with Brian Granger (Jupyter team), myself, and University of Washington’s Interactive Data Lab
  16. #JSM2016 Jake VanderPlas Altair is a declarative API: Altair itself

    contains no renderers, but simply outputs a Vega-Lite visualization specification: - Portable JSON serialization (Vega-Lite spec) - Interest from other viz libraries (matplotlib, Bokeh, Plotly) in supporting this serialization. - Potential for cross-language compatibility http://github.com/ellisonbg/altair
  17. #JSM2016 Jake VanderPlas or $ conda install altair --channel conda-forge

    $ pip install altair $ jupyter nbextension install --sys-prefix --py vega Try Altair: http://github.com/ellisonbg/altair/ For a Jupyter notebook tutorial, type import altair altair.tutorial()
  18. #JSM2016 Jake VanderPlas Email: [email protected] Twitter: @jakevdp Github: jakevdp Web:

    http://vanderplas.com Blog: http://jakevdp.github.io Thank You!
  19. #JSM2016 Jake VanderPlas Bar Chart: d3 var margin = {top:

    20, right: 20, bottom: 30, left: 40}, width = 960 - margin.left - margin.right, height = 500 - margin.top - margin.bottom; var x = d3.scale.ordinal() .rangeRoundBands([0, width], .1); var y = d3.scale.linear() .range([height, 0]); var xAxis = d3.svg.axis() .scale(x) .orient("bottom"); var yAxis = d3.svg.axis() .scale(y) .orient("left") .ticks(10, "%"); var svg = d3.select("body").append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); d3.tsv("data.tsv", type, function(error, data) { if (error) throw error; x.domain(data.map(function(d) { return d.letter; })); y.domain([0, d3.max(data, function(d) { return d.frequency; })]); svg.append("g") .attr("class", "x axis") .attr("transform", "translate(0," + height + ")") .call(xAxis); svg.append("g") .attr("class", "y axis") .call(yAxis) .append("text") .attr("transform", "rotate(-90)") .attr("y", 6) .attr("dy", ".71em") .style("text-anchor", "end") .text("Frequency"); svg.selectAll(".bar") .data(data) .enter().append("rect") .attr("class", "bar") .attr("x", function(d) { return x(d.letter); }) .attr("width", x.rangeBand()) .attr("y", function(d) { return y(d.frequency); }) .attr("height", function(d) { return height - y(d.frequency); }); }); function type(d) { d.frequency = +d.frequency; return d; }
  20. #JSM2016 Jake VanderPlas Bar Chart: Vega { "width": 400, "height":

    200, "padding": {"top": 10, "left": 30, "bottom": 30, "right": 10}, "data": [ { "name": "table", "values": [ {"x": 1, "y": 28}, {"x": 2, "y": 55}, {"x": 3, "y": 43}, {"x": 4, "y": 91}, {"x": 5, "y": 81}, {"x": 6, "y": 53}, {"x": 7, "y": 19}, {"x": 8, "y": 87}, {"x": 9, "y": 52}, {"x": 10, "y": 48}, {"x": 11, "y": 24}, {"x": 12, "y": 49}, {"x": 13, "y": 87}, {"x": 14, "y": 66}, {"x": 15, "y": 17}, {"x": 16, "y": 27}, {"x": 17, "y": 68}, {"x": 18, "y": 16}, {"x": 19, "y": 49}, {"x": 20, "y": 15} ] } ], "scales": [ { "name": "x", "type": "ordinal", "range": "width", "domain": {"data": "table", "field": "x"} }, { "name": "y", "type": "linear", "range": "height", "domain": {"data": "table", "field": "y"}, "nice": true } ], "axes": [ {"type": "x", "scale": "x"}, {"type": "y", "scale": "y"} ], "marks": [ { "type": "rect", "from": {"data": "table"}, "properties": { "enter": { "x": {"scale": "x", "field": "x"}, "width": {"scale": "x", "band": true, "offset": -1}, "y": {"scale": "y", "field": "y"}, "y2": {"scale": "y", "value": 0} }, "update": { "fill": {"value": "steelblue"}
  21. #JSM2016 Jake VanderPlas Bar Chart: Vega-Lite { "description": "A simple

    bar chart with embedded data.", "data": { "values": [ {"a": "A","b": 28}, {"a": "B","b": 55}, {"a": "C","b": 43}, {"a": "D","b": 91}, {"a": "E","b": 81}, {"a": "F","b": 53}, {"a": "G","b": 19}, {"a": "H","b": 87}, {"a": "I","b": 52} ] }, "mark": "bar", "encoding": { "x": {"field": "a", "type": "ordinal"}, "y": {"field": "b", "type": "quantitative"} } }