Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
鉄道省エネに向けた車上データ活用事例の紹介
Search
JDSC
July 29, 2021
Technology
0
650
鉄道省エネに向けた車上データ活用事例の紹介
第2回合同勉強会の資料です。
鉄道省エネに向けた車上データ活用事例の紹介
- あるいは、私が鉄道車両データと省エネ最適化を悪魔合体させるまで
JDSC
July 29, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
1.9k
JDSC採用ページ
jdsc
1
37k
Data Meshと私
jdsc
0
180
Kubeflowで作る共通データ基盤 (道半ば編)
jdsc
1
180
家電製品の異常検知 (Case Study)
jdsc
0
470
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
2.1k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
390
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
130
複雑なState管理からの脱却
sansantech
PRO
1
160
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
1
120
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
710
アジャイルでの品質の進化 Agile in Motion vol.1/20241118 Hiroyuki Sato
shift_evolve
0
180
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
260
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
230
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
930
AWS Media Services 最新サービスアップデート 2024
eijikominami
0
200
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
310
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
310
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
Featured
See All Featured
Designing for humans not robots
tammielis
250
25k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
A better future with KSS
kneath
238
17k
Git: the NoSQL Database
bkeepers
PRO
427
64k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
BBQ
matthewcrist
85
9.3k
[RailsConf 2023] Rails as a piece of cake
palkan
52
4.9k
Speed Design
sergeychernyshev
25
620
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Transcript
Confidential © Japan Data Science Consortium. All rights reserved. 1
鉄道省エネに向けた車上データ活 用事例の紹介 あるいは、私が鉄道車両データと省エネ最適化を悪魔合体させるまで 2021年 6月22日 株式会社JDSC
Confidential © Japan Data Science Consortium. All rights reserved. 2
• 株式会社JDSC • データサイエティスト 横田 将尭(よこた まさたか) • 略歴メーカー R&D => JDSCでデータサイエンティストやってます。 自己紹介 -2014.3 東京大学大学院(修士) BMI実装に向けた 可塑性誘発に関する検討 2014.4-2017.8 電機メーカー@茨城 鉄道車両の省エネ運転 車上データ分析 本日のコンテンツ 2017.9-2020.4 自動車会社 @東京 自動運転車向け画像処理DNNの開発 2020.5 JDSC 小売向け需要予測・発注最適化ツールの開発
Confidential © Japan Data Science Consortium. All rights reserved. 3
鉄道 省エネ運転xデータを中心にR&Dに従事 • Why 鉄道x車両データ • Why 鉄道x省エネ運転 • 省エネ運転のアプローチ • 机上計算ベース • 実測データベース 主なトピック
Confidential © Japan Data Science Consortium. All rights reserved. 4
車両をセンサーとして、鉄道サービスの利用状況をセンシング (個人情報は含まない) Why 鉄道x車上データ 車上機器の利用状況 地上機器の利用状況 鉄道サービスの利用状況 https://www.hbm.com/jp/6207/white-paper-efficiency-and-loss-mapping-of-ac-motors/ https://mansionmarket-lab.com/commuter-rush
Confidential © Japan Data Science Consortium. All rights reserved. 5
Why 鉄道x省エネ運転 省エネ機器の導入 vs 運用の改善 運転:自動運転システムのアップデート or 運転士への運転支援 省エネがこれまで重視されていなかった分改善代が大きい 入れてしまえば 効果は確実 ハード導入を伴い高コスト 低コスト:ソフトの変更・導入で済む ただし効果は状況次第 社内外の論文・報告書の枕詞が 東日本大震災を機に...省エネが... 入社(2014年)当時、鉄道の省エネが熱かった
Confidential © Japan Data Science Consortium. All rights reserved. 6
省エネ運転計画のアプローチ1 机上計算 基本の運転手順 加速→定速運転 →惰行(アクセルオフ)→ブレーキ 速度制限があれば一旦原則して再加速 運転上の調整ポイント 最高速度 アクセルオフポイントの変更 簡略化した物理モデルにおける 変分法ベースの導出 解法例 探索空間(位置・速度・残時 間)を離散化 離散化誤差を除いた近似解を 動的計画法で導出 ヒューリスティック ←の調整ポイントを 逐次的に更新していく
Confidential © Japan Data Science Consortium. All rights reserved. 7
机上計算の苦しみと解決アプローチ https://www.jreast.co.jp/development/tech/pdf_63/tech-63-31-34.pdf (国内における)課題 • 机上計算結果が現場の運用と 異なることも多く、信じてその通りに操作してもらう ことがなかなか難しい。 • そもそも現状の運用が一定でなく、 統一も難しいため、全員が納得する基準作成が困難 過去の運転データ履歴を使用 • 過去の自分達のオペレーションということで 信頼されやすい • データソースを分けることで グループごとの運用を反映可
Confidential © Japan Data Science Consortium. All rights reserved. 8
省エネ運転計画のアプローチ2 データ活用 パターンの履歴を無加工で使うだけでは、 個人技から抜けられない →組み合わせでより良いパターンの提示 https://www.jreast.co.jp/development/tech/pdf_63/tech-63-31-34.pdf
Confidential © Japan Data Science Consortium. All rights reserved. 9
適用結果 平均10%以上の省エネ効果 理論的に効果が出ることはわかっていたが、 実適用できたことが大きな成果 https://www.jreast.co.jp/development/tech/pdf_63/tech-63-31-34.pdf
Confidential © Japan Data Science Consortium. All rights reserved. 10
• 鉄道分野におけるデータ活用事例として車上データ測定データに 基づく省エネ運転の取り組みを紹介。 • 実運用データの利用はシステムの現場に対する親和性を高める上で結構有効。 まとめ
Confidential © Japan Data Science Consortium. All rights reserved. 11
本ファイルの内容の一部、または全部を無断で転用・転載することを禁じます。