Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kubeflowで作る共通データ基盤 (道半ば編)
Search
JDSC
August 19, 2021
Technology
1
210
Kubeflowで作る共通データ基盤 (道半ば編)
合同勉強会での資料です。
JDSC
August 19, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
2.5k
JDSC採用ページ
jdsc
1
43k
Data Meshと私
jdsc
0
180
家電製品の異常検知 (Case Study)
jdsc
0
480
鉄道省エネに向けた車上データ活用事例の紹介
jdsc
0
670
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
2.2k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
410
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
今から、 今だからこそ始める Terraform で Azure 管理 / Managing Azure with Terraform: The Perfect Time to Start
nnstt1
0
250
.NET AspireでAzure Functionsやクラウドリソースを統合する
tsubakimoto_s
0
190
2025年のARグラスの潮流
kotauchisunsun
0
850
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
150
ABWGのRe:Cap!
hm5ug
1
120
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
130
Git scrapingで始める継続的なデータ追跡 / Git Scraping
ohbarye
5
510
RubyでKubernetesプログラミング
sat
PRO
4
160
EMConf JP の楽しみ方 / How to enjoy EMConf JP
pauli
2
150
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
1
220
Unsafe.BitCast のすゝめ。
nenonaninu
0
200
三菱電機で社内コミュニティを立ち上げた話
kurebayashi
1
360
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Speed Design
sergeychernyshev
25
740
Gamification - CAS2011
davidbonilla
80
5.1k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Navigating Team Friction
lara
183
15k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
How STYLIGHT went responsive
nonsquared
96
5.3k
Faster Mobile Websites
deanohume
305
30k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
Transcript
Kubeflowで作る共通データ基盤 (道半ば編)
自己紹介 - 石井 正浩 - SIerとか携帯屋さんとかを経て現職 - 朝起きたら”ものもらい”ができてて左目が あかない
今日話すこと - データ基盤開発の課題 - Kubeflow on GKEやってみた
CloudStorage (DataLake) 分析にいきつくまでのデータ基盤の構成はだいたい一緒 お客様の データ置き場 定期的に更新さ れるデータ 自社領域に コピー (Datalake)
DWH (data warehouse) データ取り込み (warehousing) 分析/モデリング 開始 DWH (datamart) 取り込むストレージが千差万別 (GCS, S3, Box, SFTP, ...) スケジュールは顧客次第 取り込める形へ変換 データの外形的な異常がないか検査 スキーマ生成 分析用マートを作成するための大量の SQL
個別 vs 共通 個別に作るときの課題 - 案外大変 - 同じことやってる割に、毎回同じような工 数かかる(データエンジニア1人張り付き 1ヶ月とか)
- 一度や二度ならともかく、何回かやると 飽きる(個人の感想です) - ビジネス上の価値を作るのはあとの フェーズなので、ここは小さくしたい - 案件単位で実装だととっちらかる - 技術スタックが異なってしまう - 同じ機能が微妙に異なる実装で行われ る 共通化するときの課題 - 権限制御ミスると死ぬ - A社にB社のデータが見えてしまった・・・ (さすがにやったことはない ) - 計算リソースの想定がしにくい - 利用者が増えれば増えたぶんだけ、 スケールさせたい - 一方で利用者が少ないとき (時間帯)は 小さくしておきたい
Kubeflow on GKE
Kubeflow ※Kubeflow公式ページより https://www.kubeflow.org/docs/started/kubeflow-overview/
Kubeflow Pipelineの開発 - PipelineのworkflowそのものはPythonで記述 - コンテナレベルの制御 (例えばサイドカーの設定とか )をしたいときはkubernetesの Python SDKを使う
- コンテナ内の処理はもちろん何で書いても良い - データ処理と親和性の高い Pythonを使うもよし - gcloudみたいなコマンドラインツールを走らせるもよし Pipeline(Python) 処理1 処理2 定義 (yaml) 定義 (yaml) 処理3 処理2 定義 (yaml) 定義 (yaml)
Kubeflow Pipelineの登録と実行 - 登録: UI or API経由で可能 - API経由の場合、マルチテナント環境だと少し面倒・・・ (というか、もはやバグ
) - https://github.com/kubeflow/kfctl/issues/140#issuecomment-719894529 - 実行 - 必要なパラメータをその場その場で渡して実行 - 実行ごとにProfileをわけることが可能 Pipeline (Python) yaml Compile 登録 Pipeline UserA UserB Profile A Profile B ※ multi user環境の場合 Param Param
workload identity ※GoogleCloud公式ページより https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
workload identityとKubeflow Profile Kubeflow Profile ≒ Kubernetes namespace UserA用に権限設定されたGCP ServiceAccount
BigQuery A_dataset ServiceAccount Profile: UserA コンテナ B_dataset Mapping (workload identity) GCS A_bucket B_bucket GKE(kubernetes) ServiceAccount Profile: UserB コンテナ
まとめ - Kubeflow on GKE、良いところばっかり書きましたが辛いところも多そうです - ドキュメントはout-of-date感たっぷり、英語しかない - 一度謎に壊れたときは作り直す以外なかった (逆に言えばそういう前提で作っておくと良さそ
う) - ただ、 - GKEと組み合わせたときの使い勝手はなかなか良い - 今回の使い方にはまあハマってそう - なんとなくミライを感じる