Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Triton: Concolic Execution Framework

Triton: Concolic Execution Framework

This talk is about the release of Triton, a concolic execution framework based on Pin. It provides components like a taint engine, a dynamic symbolic execution engine, a snapshot engine, translation of x64 instruction to SMT2, a Z3 interface to solve constraints and Python bindings. Based on these components, Triton offers the possibility to build tools for vulnerabilities research or reverse-engineering assistance.

Jonathan Salwan

June 03, 2015
Tweet

More Decks by Jonathan Salwan

Other Decks in Research

Transcript

  1. Triton: Concolic Execution Framework Florent Saudel Jonathan Salwan SSTIC Rennes

    – France Slides: detailed version June 3 2015 Keywords: program analysis, DBI, DBA, Pin, concrete execution, symbolic execution, concolic execution, DSE, taint analysis, context snapshot, Z3 theorem prover and behavior analysis.
  2. 2 • Jonathan Salwan is a student at Bordeaux University

    (CSI Master) and also an employee at Quarkslab • Florent Saudel is a student at the Bordeaux University (CSI Master) and applying to an Internship at Amossys • Both like playing with low-level computing, program analysis and software verification methods Who are we?
  3. 3 • Triton is a project started on January 2015

    for our Master final project at Bordeaux University (CSI) supervised by Emmanuel Fleury from laBRI • Triton is also sponsored by Quarkslab from the beginning Where does Triton come from?
  4. 4 • Triton is a concolic execution framework as Pintool

    • It provides advanced classes to improve dynamic binary analysis (DBA) using Pin – Symbolic execution engine – SMT semantics representation – Interface with SMT Solver – Taint analysis engine – Snapshot engine – API and Python bindings What is Triton?
  5. 5 What is Triton? Plug what you want which supports

    the SMT2-LIB format Pin Taint Engine Symbolic Execution Engine Snapshot Engine SMT Semantics IR SMT Solver Interface Python Bindings Triton internal components Triton.so pintool user script.py Z3 * Front-end Back-end User side
  6. 6 • Well-known projects – SAGE – Mayhem – Bitblaze

    – S2E • The difference? – Triton works online* through a higher level languages using the Pin engine Relative projects online*: Analysis is performed at runtime and data can be modified directly in memory to go through specific branches.
  7. 7 • You can build tools which: – Analyze a

    trace with concrete information • Registers and memory values at each program point – Perform a symbolic execution • To know the symbolic expression of registers and memory at each program point – Perform a symbolic fuzzing session – Generate and solve path constraints – Gather code coverage – Runtime registers and memory modification – Replay traces directly in memory – Scriptable debugging – Access to Pin functions through a higher level languages (Python bindings) – And probably lots of others things What kind of things you can build with Triton?
  8. 10 • Symbolic Engine • Symbolic execution is the execution

    of a program using symbolic variables instead of concrete values • Symbolic execution translates the program's semantics into a logical formula • Symbolic execution can build and keep a path formula – By solving the formula and its negation we can take all paths and “cover” a code • Instead of concrete execution which takes only one path • Then a symbolic expression is given to a SMT solver to generate a concrete value
  9. 11 • Symbolic Engine inside Triton • A trace is

    a sequence of instructions T = (Ins1 Ins ∧ 2 Ins ∧ 3 Ins ∧ 4 … Ins ∧ ∧ i ) • Instructions are represented with symbolic expressions • A symbolic trace is a sequence of symbolic expressions • Each symbolic expression is translated like this: REFout = semantic – Where : • REFout := unique ID • Semantic := REFin | <<smt expression>> • Each register or byte of memory points to its last reference → Single Static Assignment Form (SSA)
  10. 12 • Register References movzx eax, byte ptr [mem] add

    eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : -1, EBX : -1, ECX : -1, ... } // Empty set Symbolic Expression Set { }
  11. 13 • Register references movzx eax, byte ptr [mem] #0

    = symvar_1 add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #0, EBX : -1, ECX : -1, ... } // Empty set Symbolic Expression Set { <#0, symvar_1> }
  12. 14 • Register references movzx eax, byte ptr [mem] #0

    = symvar_1 add eax, 2 #1 = (bvadd #0 2) mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : -1, ECX : -1, ... } // Empty set Symbolic Expression Set { <#1, (bvadd #0 2)>, <#0, symvar_1> }
  13. 15 • Register references movzx eax, byte ptr [mem] #0

    = symvar_1 add eax, 2 #1 = (bvadd #0 2) mov ebx, eax #2 = #1 Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> }
  14. 16 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> } What is the semantic trace of EBX ?
  15. 17 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> } What is the semantic trace of EBX ? EBX holds the reference #2
  16. 18 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> } What is the semantic trace of EBX ? EBX holds the reference #2 What is #2 ?
  17. 19 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> } What is the semantic trace of EBX ? EBX holds the reference #2 What is #2 ? Reconstruction: EBX = #2
  18. 20 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> } What is the semantic trace of EBX ? EBX holds the reference #2 What is #2 ? Reconstruction: EBX = #1
  19. 21 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, (bvadd #0 2)>, <#0, symvar_1> } What is the semantic trace of EBX ? EBX holds the reference #2 What is #2 ? Reconstruction: EBX = (bvadd #0 2)
  20. 22 • Rebuild the trace with backward analysis movzx eax,

    byte ptr [mem] add eax, 2 mov ebx, eax Example: // All refs initialized to -1 Register Reference Table { EAX : #1, EBX : #2, ECX : -1, ... } // Empty set Symbolic Expression Set { <#2, #1>, <#1, add(#0, 2)>, <#0, symvar_1> } What is the semantic trace of EBX ? EBX holds the reference #2 What is #2 ? Reconstruction: EBX = (bvadd symvar_1 2)
  21. 23 • Assigning a reference for each register is not

    enough, we must also add references on memory • Follow references over memory mov dword ptr [rbp-0x4], 0x0 ... mov eax, dword ptr [rbp-0x4] push eax ... pop ebx What do we want to know? Eax = 0 from somewhere ebx = eax References #1 = 0x0 ... #x = #1 #2 = #1 ... #x = #2
  22. 24 • All registers, flags and each byte of memory

    are references • A reference assignment is in SSA form during the execution • The registers, flags and bytes of memory are assigned in the same way • A memory reference can be assigned from a register reference (mov [mem], reg) • A register reference can be assigned from a memory reference (mov reg, [mem]) • If a reference doesn't exist yet, we concretize the value and we affect a new reference • References conclusion
  23. 26 • SMT Semantics Representation with SSA Form • All

    instructions semantics are represented via SMT2-LIB representation • This SMT2-LIB representation is on SSA form add rax, rdx rax = (bvadd ((_ extract 63 0) rax) ((_ extract 63 0) rdx)) ... (af, cf, of, pf) ... sf = (ite (= ((_ extract 63 63) rax) (_ bv1 1)) (_ bv1 1) (_ bv0 1)) zf = (ite (= rax (_ bv0 64)) (_ bv1 1) (_ bv0 1)) #60 = (bvadd ((_ extract 63 0) #58) ((_ extract 63 0) #54)) ... (af, cf, of, pf) ... #64 = (ite (= ((_ extract 63 63) #60) (_ bv1 1)) (_ bv1 1) (_ bv0 1)) #65 = (ite (= #60 (_ bv0 64)) (_ bv1 1) (_ bv0 1)) Assembly SMT SSA SMT New rax reference Old rax reference Old rdx reference
  24. 27 • SMT Semantics Representation with SSA Form • Why

    use SMT2-LIB representation? – SMT-LIB is an international initiative aimed at facilitating research and development in Satisfiability Modulo Theories (SMT) – As all Triton's expressions are in the SMT2-LIB representation, you can plug all solvers which supports this representation • Currently Triton has an interface with Z3 but feel free to plug what you want
  25. 29 • Symbolic Execution Guided By The Taint Analysis •

    Taint analysis provides information about which registers and memory addresses are controllable by the user at each program point: – Assists the symbolic engine to setup the symbolic variables (a symbolic variable is a memory area that the user can control) – Limit the symbolic engine to the relevant part of the program – At each branch instruction, we directly know if the user can go through both branches (this is mainly used for code coverage)
  26. 30 • Symbolic Execution Guided By The Taint Analysis •

    Transform a tainted area into a symbolic variable 0x40058b: movzx eax, byte ptr [rax] -> #33 = SymVar_0 ; Controllable by the user -> #34 = (_ bv4195726 64) ; RIP 0x40058e: movsx eax, al -> #35 = ((_ sign_extend 24) ((_ extract 7 0) #33)) -> #36 = (_ bv4195729 64) ; RIP 0x40058b: movzx eax, byte ptr [rax] -> #33 = ((_ zero_extend 24) (_ bv97 8)) -> #34 = (_ bv4195726 64) ; RIP 0x40058e: movsx eax, al -> #35 = ((_ sign_extend 24) ((_ extract 7 0) #33)) -> #36 = (_ bv4195729 64) ; RIP rax points on a tainted area Use symbolic variable instead of concrete value
  27. 31 • Symbolic Execution Guided By The Taint Analysis •

    Can I go through this branch? – Check if flags are tainted 0x4005ae: cmp ecx, eax -> #72 = (bvsub ((_ extract 31 0) #52) ((_ extract 31 0) #70)) ...CF, OF, SF, AF, and PF skipped... -> #78 = (ite (= #72 (_ bv0 32)) (_ bv1 1) (_ bv0 1)) ; ZF -> #79 = (_ bv4195760 64) ; RIP 0x4005b0: jz 0x4005b9 -> #80 = (ite (= #78 (_ bv1 1)) (_ bv4195769 64) (_ bv4195762 64)) ; RIP eax is tainted tainted
  28. 32 • Taint Analysis guided by the Symbolic Engine and

    the Solver Engine • As the symbolic execution may be guided by the taint analysis, the taint analysis may also be guided by the symbolic execution and the solver engine • What to choose between an over-approximation and under-approximation? – Over-approximation: We can generate inputs for infeasible concrete paths. – Under-approximation: We can miss some feasible paths. • The goal of the taint engine is to say YES or NO if a register and memory is probably tainted (byte-level over approximation) • The goal of the symbolic engine is to build symbolic expressions based on instructions semantics • The goal of the solver engine is to generate a model of an expression (path condition) – If your target is not tainted, don't ask a model → gain time – If the solver engine returns UNSAT → the tainted inputs can't influence the control flow to go through this path. – If the solver engine returns SAT → the path can be triggered with the actual tainted inputs. The model give us the set of concrete inputs for this path.
  29. 34 • Snapshot Engine – Replay your trace • The

    snapshot engine offers the possibility to take and restore snapshot – Mainly used to apply code coverage in memory. Useful when you fuzz the binary – In future versions, it will be possible to take different snapshots at several program point • The snapshot engine only restores registers and memory states – If there is some disk, network,... I/O, Triton won't be able to restore the files modification Restore context Snapshot Restore Snapshot Target function / basic block Dynamic Symbolic Execution Possible paths in the target
  30. 36 • How to install Triton? • Easy is easy

    • You just need: – Pin v2.14-71313 – Z3 v4.3.1 – Python v2.7 $ cd pin-2.14-71313-gcc.4.4.7-linux/source/tools/ $ git clone [email protected]:JonathanSalwan/Triton.git $ cd Triton $ make $ ../../../pin -t ./triton.so -script your_script.py -- ./your_target_binary.elf64 Shell 1: Installation
  31. 37 • Start an analysis import triton if __name__ ==

    '__main__': # Start the symbolic analysis from the 'check' function triton.startAnalysisFromSymbol('check') # Run the instrumentation - Never returns triton.runProgram() import triton if __name__ == '__main__': # Start the symbolic analysis from address triton.startAnalysisFromAddr(0x40056d) triton.stopAnalysisFromAddr(0x4005c9) # Run the instrumentation - Never returns triton.runProgram() Code 1: Start analysis from symbols Code 2: Start analysis from address
  32. 38 • Predicate taint and untaint import triton if __name__

    == '__main__': # Start the symbolic analysis from the 'check' function triton.startAnalysisFromSymbol('check') # Taint the RAX and RBX registers when the address 0x40058e is executed triton.taintRegFromAddr(0x40058e, [IDREF.REG.RAX, IDREF.REG.RBX]) # Untaint the RCX register when the address 0x40058e is executed triton.untaintRegFromAddr(0x40058e, [IDREF.REG.RCX]) # Run the instrumentation - Never returns triton.runProgram() Code 3: Predicate taint and untaint at specific addresses
  33. 39 • Callbacks • Triton supports 8 kinds of callbacks

    – AFTER • Defines a callback after the instruction processing – BEFORE • Defines a callback before the instruction processing – BEFORE_SYMPROC • Defines a callback before the symbolic processing – FINI • Define a callback at the end of the execution – ROUTINE_ENTRY • Define a callback at the entry of a specified routine. – ROUTINE_EXIT • Define a callback at the exit of a specified routine. – SYSCALL_ENTRY • Define a callback before each syscall processing – SYSCALL_EXIT • Define a callback after each syscall processing
  34. 40 • Callback on SYSCALL def my_callback_syscall_entry(threadId, std): print '->

    Syscall Entry: %s' %(syscallToString(std, getSyscallNumber(std))) if getSyscallNumber(std) == IDREF.SYSCALL.LINUX_64.WRITE: arg0 = getSyscallArgument(std, 0) arg1 = getSyscallArgument(std, 1) arg2 = getSyscallArgument(std, 2) print ' sys_write(%x, %x, %x)' %(arg0, arg1, arg2) def my_callback_syscall_exit(threadId, std): print '<- Syscall return %x' %(getSyscallReturn(std)) if __name__ == '__main__': startAnalysisFromSymbol('main') addCallback(my_callback_syscall_entry, IDREF.CALLBACK.SYSCALL_ENTRY) addCallback(my_callback_syscall_exit, IDREF.CALLBACK.SYSCALL_EXIT) runProgram() Code 4: Callback before and after syscalls processing -> Syscall Entry: fstat <- Syscall return 0 -> Syscall Entry: mmap <- Syscall return 7fb7f06e1000 -> Syscall Entry: write sys_write(1, 7fb7f06e1000, 6) Code 4 result
  35. 41 • Callback on ROUTINE def mallocEntry(threadId): sizeAllocated = getRegValue(IDREF.REG.RDI)

    print '-> malloc(%#x)' %(sizeAllocated) def mallocExit(threadId): ptrAllocated = getRegValue(IDREF.REG.RAX) print '<- %#x' %(ptrAllocated) if __name__ == '__main__': startAnalysisFromSymbol('main') addCallback(mallocEntry, IDREF.CALLBACK.ROUTINE_ENTRY, "malloc") addCallback(mallocExit, IDREF.CALLBACK.ROUTINE_EXIT, "malloc") runProgram() Code 5: Callback before and after routine processing -> malloc(0x20) <- 0x8fc010 -> malloc(0x20) <- 0x8fc040 -> malloc(0x20) <- 0x8fc010 Code 5 result
  36. 42 • Callback BEFORE and AFTER instruction processing def my_callback_before(instruction):

    print 'TID (%d) %#x %s' %(instruction.threadId, instruction.address, instruction.assembly) if __name__ == '__main__': # Start the symbolic analysis from the 'check' function startAnalysisFromSymbol('check') # Add a callback. addCallback(my_callback_before, IDREF.CALLBACK.BEFORE) # Run the instrumentation - Never returns runProgram() Code 6: Callback before instruction processing TID (0) 0x40056d push rbp TID (0) 0x40056e mov rbp, rsp TID (0) 0x400571 mov qword ptr [rbp-0x18], rdi TID (0) 0x400575 mov dword ptr [rbp-0x4], 0x0 ... TID (0) 0x4005b2 mov eax, 0x1 TID (0) 0x4005b7 jmp 0x4005c8 TID (0) 0x4005c8 pop rbp Code 6 result
  37. 43 • Instruction class def my_callback(instruction): ... • instruction.address •

    instruction.assembly • instruction.imageName - e.g: libc.so • instruction.isBranch • instruction.opcode • instruction.opcodeCategory • instruction.operands • instruction.symbolicElements – List of SymbolicElement class • instruction.routineName - e.g: main • instruction.sectionName - e.g: .text • instruction.threadId
  38. 44 • SymbolicElement class instruction.symbolicElements[0] • symbolicElement.comment → blah •

    symbolicElement.destination → #41 • symbolicElement.expression → #41 = (bvadd ((_ extract 63 0) #40) ((_ extract 63 0) #39)) • symbolicElement.id → 41 • symbolicElement.isTainted → True or False • symbolicElement.source → (bvadd ((_ extract 63 0) #40) ((_ extract 63 0) #39)) Instruction: add rax, rdx SymbolicElement: #41 = (bvadd ((_ extract 63 0) #40) ((_ extract 63 0) #39)) ; blah
  39. 45 • Dump the symbolic expressions trace def my_callback_after(instruction): print

    '%#x: %s' %(instruction.address, instruction.assembly) for se in instruction.symbolicElements: print '\t -> ', se.expression print if __name__ == '__main__': startAnalysisFromSymbol('check') addCallback(my_callback_after, IDREF.CALLBACK.AFTER) runProgram() Code 7: Dump a symbolic expression trace 0x4005ab: movsx eax, al -> #70 = ((_ sign_extend 24) ((_ extract 7 0) #68)) -> #71 = (_ bv4195758 64) 0x4005ae: cmp ecx, eax -> #72 = (bvsub ((_ extract 31 0) #52) ((_ extract 31 0) #70)) ... -> #77 = (ite (= ((_ extract 31 31) #72) (_ bv1 1)) (_ bv1 1) (_ bv0 1)) -> #78 = (ite (= #72 (_ bv0 32)) (_ bv1 1) (_ bv0 1)) -> #79 = (_ bv4195760 64) 0x4005b0: jz 0x4005b9 -> #80 = (ite (= #78 (_ bv1 1)) (_ bv4195769 64) (_ bv4195762 64)) Code 7 result
  40. 46 • Play with the Taint engine at runtime #

    0x40058b: movzx eax, byte ptr [rax] def cbeforeSymProc(instruction): if instruction.address == 0x40058b: rax = getRegValue(IDREF.REG.RAX) taintMem(rax) if __name__ == '__main__': startAnalysisFromSymbol('check') addCallback(cbeforeSymProc, IDREF.CALLBACK.BEFORE_SYMPROC) runProgram() Code 8: Taint memory at runtime 0x40058b: movzx eax, byte ptr [rax] -> #33 = SymVar_0 -> #34 = (_ bv4195726 64) 0x40058e: movsx eax, al -> #35 = ((_ sign_extend 24) ((_ extract 7 0) #33)) -> #36 = (_ bv4195729 64) Code 8 result Modifications must be done before the symbolic processing
  41. 47 • Taint argv[x][x] at the main function def mainAnalysis(threadId):

    rdi = getRegValue(IDREF.REG.RDI) # argc rsi = getRegValue(IDREF.REG.RSI) # argv while rdi != 0: argv = getMemValue(rsi + ((rdi-1) * 8), 8) offset = 0 while getMemValue(argv + offset, 1) != 0x00: taintMem(argv + offset) offset += 1 print '[+] %03d bytes tainted from the argv[%d] (%#x) pointer' %(offset, rdi-1, argv) rdi -= 1 return Code 9: Taint all arguments when the main function occurs $ pin -t ./triton.so -script taint_main.py -- ./example.bin64 12 123456 123456789 [+] 009 bytes tainted from the argv[3] (0x7fff802ad116) pointer [+] 006 bytes tainted from the argv[2] (0x7fff802ad10f) pointer [+] 002 bytes tainted from the argv[1] (0x7fff802ad10c) pointer [+] 015 bytes tainted from the argv[0] (0x7fff802ad0ef) pointer Code 9 result
  42. 48 • Play with the Symbolic engine 0x40058b: movzx eax,

    byte ptr [rax] ... ... 0x4005ae: cmp ecx, eax Example 10: Assembly code def callback_beforeSymProc(instruction): if instruction.address == 0x40058b: rax = getRegValue(IDREF.REG.RAX) taintMem(rax) def callback_after(instruction): if instruction.address == 0x4005ae: # Get the symbolic expression ID of ZF zfId = getRegSymbolicID(IDREF.FLAG.ZF) # Backtrack the symbolic expression ZF zfExpr = getBacktrackedSymExpr(zfId) # Craft a new expression over the ZF expression : (assert (= zfExpr True)) expr = smt2lib.smtAssert(smt2lib.equal(zfExpr, smt2lib.bvtrue())) print expr Code 10: Backtrack symbolic expression We know that rax points on a tainted area (assert (= (ite (= (bvsub ((_ extract 31 0) ((_ extract 31 0) (bvxor ((_ extract 31 0) (bvsub ((_ extract 31 0) ((_ sign_extend 24) ((_ extract 7 0) SymVar_0))) (_ bv1 32))) (_ bv85 32)))) ((_ extract 31 0) ((_ sign_extend 24) ((_ extract 7 0) ((_ zero_extend 24) (_ bv49 8)))))) (_ bv0 32)) (_ bv1 1) (_ bv0 1)) (_ bv1 1))) Example 10 result Symbolic Variable
  43. 49 • Play with the Symbolic engine ... zfExpr =

    getBacktrackedSymExpr(zfId) # Craft a new expression over the ZF expression : (assert (= zfExpr True)) expr = smt2lib.smtAssert(smt2lib.equal(zfExpr, smt2lib.bvtrue())) ... Extract of the Code 10 • What does it really mean? – Triton builds symbolic formulas based on the instructions semantics – Triton also exports smt2lib functions which allows you to create your own formula – In this example, we want that the ZF expression is equal to 1
  44. 50 • Play with the Solver engine ... zfExpr =

    getBacktrackedSymExpr(zfId) # Craft a new expression over the ZF expression : (assert (= zfExpr True)) expr = smt2lib.smtAssert(smt2lib.equal(zfExpr, smt2lib.bvtrue())) ... model = getModel(expr) print model Extract of the Code 10 {'SymVar_0': 0x65} Result • getModel() returns a dictionary of valid model for each symbolic variable 0x40058b: movzx eax, byte ptr [rax] ... ... 0x4005ae: cmp ecx, eax Example 10: Assembly code We know now that the first character must be 0x65 to set the ZF at the compare instruction
  45. 51 • Play with the Solver engine and inject values

    directly in memory ... model = getModel(expr) print model Extract of the Code 10 Result • Each symbolic variable is assigned to a memory address (SymVar ↔ Address) – Possible to get the symbolic variable from a memory address • getSymVarFromMemory(addr) – Possible to get the memory address from a symbolic variable • getMemoryFromSymVar(symVar) {'SymVar_0': 0x65} for k, v in model.items(): setMemValue(getMemoryFromSymVar(k), getSymVarSize(k), v) Inject values given by the solver in memory
  46. 52 • Inject values in memory is not enough Play

    with the snapshot engine • Inject values in memory after instructions processing is useless • That's why Triton offers a snapshot engine φ1 φ2 φ3 φ4 φ5 φ6 0x40058b: movzx eax, byte ptr [rax] 0x4005ae: cmp ecx, eax def callback_after(instruction): if instruction.address == 0x40058b and isSnapshotEnable() == False: takeSnapshot() if instruction.address == 0x4005ae: if getFlagValue(IDREF.FLAG.ZF) == 0: zfExpr = getBacktrackedSymExpr(...) # Described on slide 45 expr = smt2lib.smtAssert(...zfExpr...) # Described on slide 45 for k, v in getModel(expr).items(): # Described on slide 48 saveValue(...) restoreSnapshot() restore snapshot take snapshot
  47. 54 • Stop pasting fucking code Show me a global

    vision • Full API and Python bindings describes here – https://github.com/JonathanSalwan/Triton/wiki/Python-Bindings – ~80 functions exported over the Python bindings • Basically we can: – Taint and untaint memory and registers – Inject value in memory and registers – Add callbacks at each program point, syscalls, routine – Assign symbolic expression on registers and bytes of memory – Build and customize symbolic expressions – Solve symbolic expressions – Take and restore snapshots – Do all this in Python!
  48. 56 • Conclusion • Triton: – is a Pintool which

    provides others classes for DBA – is designed as a concolic execution framework – provides an API and Python bindings – supports only x86-64 binaries – currently supports ~100 semantics but we are working hard on it to increase the semantics support • An awesome thanks to Kevin `wisk` Szkudlapski and Francis `gg` Gabriel for the x86.yaml from the Medusa project :) – is free and open-source :) – is available here : github.com/JonathanSalwan/Triton
  49. 57 • Contacts – [email protected][email protected] • Thanks –

    We would like to thank the SSTIC's staff and especially Rolf Rolles, Sean Heelan, Sébastien Bardin, Fred Raynal and Serge Guelton for their proofreading and awesome feedbacks! Then, a big thanks to Quarkslab for the sponsor. Thanks For Your Attention Question(s)?
  50. 58 • Q&A - Performances • Host machine configuration –

    Tested with an Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz – 16 Go DDR3 – 415 Go SSD Swap • The targeted binary analyzed was /usr/bin/z3 – 6,789,610 symbolic expressions created for 1 trace – The binary has been analyzed in 180 seconds • One trace with SMT2-LIB translation and the taint spread – 19 Go of RAM consumed • Due to the SMT2-LIB strings manipulation