Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
気液界面と自由エネルギー / Gas Liquid Surface
Search
kaityo256
PRO
January 13, 2022
Education
1
1.5k
気液界面と自由エネルギー / Gas Liquid Surface
気液界面の密度プロファイルにtanhが現れる話。
kaityo256
PRO
January 13, 2022
Tweet
Share
More Decks by kaityo256
See All by kaityo256
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
5
1.3k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
5
1.8k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
3
460
論文紹介のやり方 / How to review
kaityo256
PRO
15
83k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
10
1.5k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
6
520
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5.3k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
1.3k
論文の読み方 / How to survey
kaityo256
PRO
223
170k
Other Decks in Education
See All in Education
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
200
Tangible, Embedded and Embodied Interaction - Lecture 7 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
横浜翠嵐高校 職業講話 / Talk for YOKOHAMA SUIRAN 2024
mura_mi
0
210
Are puppies a ranking factor?
jonoalderson
0
740
Data Management and Analytics Specialisation
signer
PRO
0
1.4k
OpenAI Education Forum 資料「教育と生成AI ~事例から見えるこれからの活用~」
luiyoshida
2
760
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
230
Gesture-based Interaction - Lecture 6 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
ANS-C01_2回不合格から合格までの道程
amarelo_n24
1
230
社外コミュニティと「学び」を考える
alchemy1115
2
160
AIの時代こそ、考える知的学習術
yum3
2
150
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The World Runs on Bad Software
bkeepers
PRO
68
11k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
The Invisible Side of Design
smashingmag
299
51k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Facilitating Awesome Meetings
lara
54
6.4k
Documentation Writing (for coders)
carmenintech
71
4.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Cost Of JavaScript in 2023
addyosmani
50
8.3k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
1 27 気液界面と自由エネルギー 慶應義塾大学理工学部物理情報工学科 渡辺
2 27 相転移とは 温度などを変えた時、ミクロな性質は変わらないまま、 マクロな性質が大きく変化すること 融解:氷→水 沸騰:水→水蒸気 どちらも、ある温度を境目に性質が大きく変化 ただし、ミクロには水分子は何も変化していない 融点、沸点など、相転移を起こす点をまとめて
臨界点と呼ぶ
3 27 相転移とは 融解はなんとなくわかる 氷:くっついて動かない 水:自由に動く 沸騰とはなんだろう? 水:自由に動く(高密度) 水蒸気:自由に動く(低密度)
4 27 相転移とは 沸騰は、非常に身近な相転移現象であり、 工学応用上も重要 しかし、ミクロにどのようなことが 起きているかよくわかっていない ミクロからマクロな振る舞いを知りたい 統計力学
5 27 本質を抜き出す 原子が近づくと電子が相互作用をする この時の電子状態まで考えるのが第一原理計算 電子密度 原子の距離から力を与えるポテンシャル関数を 決めて計算するのが古典分子動力学法
6 27 本質を抜き出す 引力 ほぼ相互作用なし 斥力 距離 力 数値計算で良く使われるLennard-Jonesポテンシャル 近距離:斥力
中距離:引力 遠距離:相互作用なし
7 27 本質を抜き出す もっと単純化(格子ガス模型) ひとつのセルに 2つの原子は入れない 近距離で斥力 中距離で引力 遠距離で 相互作用無し
-ε 隣り合うとエネルギーが εだけ下がる 隣接していないと 相互作用なし
8 27 本質を抜き出す 原子がくっついている状態を液相、離れている状態 を気相と呼ぶ 気相 液相 LxLマスの中に2個だけ原子が入っている状態を考える
9 27 ボルツマン重み ある状態のエネルギーをE、温度をTとすると、 その状態の出現確率は以下に比例する 𝑘𝐵 exp(−𝛽𝐸) ボルツマン定数 -ε exp(𝛽𝜖)
𝛽 = 1/𝑘𝐵 𝑇 逆温度 液相(左)が出現する確率は気相(右)が出現する確率の 倍 液相の出現確率の方が大きい
10 27 状態数 気相 液相 通り 通り 液相が出現する確率 = 2𝑉𝑒𝐾
2𝑉𝑒𝐾 + 𝑉(𝑉 − 5)/2 𝐾 = 𝛽𝜖 周期境界条件 V=L x Lの格子を考える 2𝑉 𝑉 𝑉 − 1 2 − 2𝑉
11 27 状態数 状態の数は気相の方が多い 気相 液相 2𝑉 𝑉 𝑉 −
1 2 − 2𝑉 状態数 L=3の時 18 18 L=10の時 200 4750 L=20の時 800 79000
12 27 重み vs. 状態数 液相の出現確率 温度が低い 4x4マスに2原子の場合 温度が高い 2𝑉𝑒𝐾
2𝑉𝑒𝐾 + 𝑉(𝑉 − 5)/2 𝐾
13 27 重み vs. 状態数 20x20マスに2原子の場合 液相 気相 サイズが大きくなるほど、原子が増えるほど、「確率 の入れ替わり」が急峻に→相転移
温度が低い 温度が高い 𝐾 液相の出現確率
14 27 何が起きた? 気相 液相 一つ一つの出現確率は高いが、 総数が少ない →エネルギー重視 一つ一つの出現確率は低いが、 総数が多い
→エントロピー重視
15 27 自由エネルギー 𝐹 = 𝑈 − 𝑇𝑆 ヘルムホルツの自由エネルギー エネルギーとエントロピーをまとめて扱う
自然は自由エネルギーを最小にする状態を好む 低温:エネルギー重視(秩序相) 高温:エントロピー重視(無秩序相)
16 27 自由エネルギー 系は自由エネルギーを最小にする状態を好む 低密度相(気相)と高密度相(液相)が存在する 「自由エネルギーを最小にする密度」が存在する 自由エネルギーが密度の関数で書けるはず
17 27 自由エネルギー 自由エネルギー 密度 低温の時 液相(高密度相) 高温の時 気相(低密度相) 自由エネルギー
密度
18 27 自由エネルギー 自由エネルギーはこんな形になっていそう 𝐹 𝜌 = 𝑎𝜌4 − 𝑏𝜌2
※変数変換で奇数次を落としている b<0の時 密度 極小点は一つ 気相と液相の区別はなくなる b>0の時 極小点が2つ →気相と液相 (超臨界状態) 自由エネルギーの微分がゼロとなる点が平衡状態
19 27 平衡状態とは 系の示強変数が空間的に一様で、時間的に変化しない 状態を平衡状態と呼ぶ 気液共存状態 温度、圧力、化学ポテンシャルは 空間的に一様だが、密度が非一様 空間的に非一様な密度を自由エネルギーで論じたい →局所自由エネルギーの導入
20 27 局所自由エネルギー 自由エネルギーが局所自由エネルギーの積分で書けるとする 𝐹 𝑓 = ∫ 𝑓 𝑥
𝑑𝑥 局所自由エネルギーが、局所密度の関数になっていると仮定 𝑓 𝜌(𝑥) 密度の全系にわたる積分が粒子数 𝑁 = න 0 𝐿 𝜌𝑑𝑥
21 27 局所自由エネルギー 𝑓 𝜌 = 𝑎𝜌4 − 𝑏𝜌2 局所自由エネルギーもこう書けてると仮定
𝐹 𝜌 を極小化する密度分布はステップ関数になる 𝑥 𝜌 𝜌 𝑓
22 27 局所自由エネルギー 𝑓 𝜌 = 𝑎𝜌4 − 𝑏𝜌2 +
𝑐2 𝑑𝜌 𝑑𝑥 2 𝑥 𝜌 密度が急激に変わるのは 非物理的 密度変化に対するペナルティ項を追加
23 27 スカラー場の理論 最終的に自由エネルギーは以下のようになった 𝐹 𝜌 = න 𝑎𝜌4 −
𝑏𝜌2 + 𝑐2 𝑑𝜌 𝑑𝑥 2 𝑑𝑥 一般に、自由エネルギー密度を局所秩序変数φの関数として 𝐹 𝜙 = න 𝑎𝜙4 − 𝑏𝜙2 + 𝑐2 𝑑𝜙 𝑑𝑥 2 𝑑𝑥 と表すことが多い。これをφ4 (ファイフォー)模型と呼ぶ 自由エネルギーの変分がゼロとなる点が平衡状態
24 27 スカラー場の理論 𝛿𝐹 = 4𝑎𝜙3𝛿𝜙 − 2𝑏𝜙𝛿𝜙 + 2𝑐2𝜙′𝛿𝜙′
𝐹 𝜙 = න 𝑎𝜙4 − 𝑏𝜙2 + 𝑐2 𝑑𝜙 𝑑𝑥 2 𝑑𝑥 変分をとる 部分積分 𝛿𝐹 = 4𝑎𝜙3𝛿𝜙 − 2𝑏𝜙𝛿𝜙 − 2𝑐2𝜙′′𝛿𝜙 = 4𝑎𝜙3 − 2𝑏𝜙 − 2𝑐2𝜙′′ 𝛿𝜙 =0
25 27 スカラー場の理論 2𝑐2 𝑑2𝜙 𝑑𝑥 = 4𝑎𝜙3 − 2𝑏𝜙
a = 1/2, b = 2の時 𝑐2 𝑑2𝜙 𝑑𝑥 = 𝜙3 − 2𝜙 𝜙 𝑥 = tanh(𝑐(𝑥 − 𝑥𝑐 )) この常微分方程式の解は これを「キンク解」と呼ぶ ※変数変換で係数を落とせる 𝑁 = න 0 𝐿 𝜙𝑑𝑥 𝑥𝑐 は以下の条件から決まる
26 27 実際の界面の密度プロファイル 𝜌 𝑧 = tanh 𝑥 − 𝑥𝑐
𝜆 𝐹 𝜙 = න 𝑎𝜙4 − 𝑏𝜙2 + 𝑐2 𝑑𝜙 𝑑𝑥 2 𝑑𝑥 x 密度 𝜆 = 1/𝑐 𝜆 c:界面張力の強さ λ:界面の幅の長さ
27 27 まとめ 相転移とは何か? エネルギーを重視する相(秩序相)と、エントロピー を重視する相(無秩序相)の競合 自由エネルギーとは何か? それが極小となる点において平衡状態が実現する もの 界面がtanhになるのはなぜか?
2つの極小値を持ち、かつ密度勾配にペナルティ がある局所自由エネルギーの変分を取って出てく る微分方程式の解だから