Upgrade to Pro — share decks privately, control downloads, hide ads and more …

CFMLの概要と研究動向 / cfml #1 introduction

CFMLの概要と研究動向 / cfml #1 introduction

CFML勉強会#1の資料です。(https://connpass.com/event/128714/)

Kazuki Taniguchi

July 10, 2019
Tweet

More Decks by Kazuki Taniguchi

Other Decks in Technology

Transcript

  1. • ৬ྺ • 2014.4-2019.3 • גࣜձࣾαΠόʔΤʔδΣϯτ ΞυςΫຊ෦ AI Lab •

    2019.4- • ౎಺ͷελʔτΞοϓ • ϑϦʔϥϯε(AI/MLͷݚڀ։ൃ) • ݚڀ෼໺ • Pattern Recognition / Image Super Resolution • Recommendation / Response Prediction • Counterfactual ML ࣗݾ঺հ ୩ޱ ࿨ً (@kazk1018)
  2. Summary • Counterfactual Machine Learningͷ֓ཁ • ൓ࣄ࣮͕ੜ͡ΔσʔλΛ༻͍ͨػցֶशͰ͋Δ • Interactive LearningͱCausal

    Inference͕ڞมྔγϑτͷ෦ ෼໰୊Ͱ͋Δ͜ͱΛઆ໌͢Δ • ݚڀಈ޲ • ޿ࠂͷίϯϖʹΑͬͯσʔληοτ͕ެ։͞Ε͍ͯΔ • ֶ֤ձͷWorkshopΛ঺հ͢Δ
  3. ໰୊ઃఆ ͋ΔϢʔβ͕ਪનͨ͠঎඼ΛΫϦοΫ(Feedback)͔ͨ͠ Ͳ͏͔ͷϩάΛऔಘ͍ͯ͠Δ ࣌ࠁ ঎඼ Ϣʔβ ΫϦοΫ  " 9

    /P  # : /P  $ 9 :FT  # ; /P  $ ; /P աڈϩά
  4. Online Evaluation Randomized Controlled Experiment (A/B Testing) • ਖ਼֬ͳൺֱΛߦ͏͜ͱ͕Մೳ (Gold

    Standard) • ݁Ռ͕ग़Δ·Ͱʹ͕͔͔࣌ؒΔ • ৽͍͠ํࡦͷόά΍UX௿ԼͷϦεΫ͕͋Δ • ຊ൪ಋೖͷ։ൃίετ͕େ͖͍ 50% 50% π π0
  5. Offline Evaluation • طଘͷϩάσʔλ͔Β৽͍͠PolicyΛධՁ͢Δ • ࣮ࡍʹ͸ݟ͍ͤͯͳ͍঎඼Λબ୒͢Δ৔߹͸ධՁ͕Ͱ ͖ͳ͍ ࣌ࠁ ঎඼ Ϣʔβ

    ΫϦοΫ  " 9 /P → BΛਪનͨ͠৔߹͸ʁ π(x) ΫϦοΫ͞ΕΔ͔Ͳ͏͔͸Θ͔Βͳ͍ (Counterfactual)
  6. Counterfactual Machine Learning ൓ࣄ࣮͕ੜ͡ΔσʔλΛ༻͍ͨػցֶश Causal Inference Interactive Learning Counterfactual Machine

    Learning ※͜ͷൃදͰ͸ڞมྔγϑτͷ؍఺͔Βݟ͍ͯ͘ (From A Machine Learning Perspective)
  7. ڞมྔγϑτ • ҎԼͷ৚݅ͷ໰୊Λѻ͏ p(x) ≠ p′(x) p(y|x) = p′(y|x) ͸

    ʹಠཱʹै͍, ͸ ʹ ಠཱʹै͏ͱԾఆ͢Δ D = {(xi , yi )}n i=1 p(x, y) D′ = {x′ i }m i=1 ∫ p′(x, y)dy ͜ͷͱ͖, ࣍ͷΑ͏ͳ৚݅Λຬͨ͢ͱ͖Λڞมྔγϑτͱ͍͏
  8. ڞมྔγϑτ • ྫ) Ի੠ೝࣝ, ը૾ೝࣝ, etc…
 ɹ : Ի੠σʔλ, :

    ࿩ऀ, : ࢠڙ, : େਓ
 ɹ : ը૾σʔλ, : ਓ෺, : ࣨ಺, : ԰֎ x y p(x) p′(x) x y p(x) p′(x) p(x, y) = p(y|x)p(x) p′(x, y) = p(y|x)p′(x) x y y′ x′
  9. ڞมྔγϑτԼͷ༧ଌϞσϧ • ͱ Λ༻͍ͯ৽ͨͳೖྗ ʹର͢Δऔಘ Λ ༧ଌ͢ΔϞσϧ Λֶश͍ͨ͠ • ଛࣦؔ਺Λ

    ͱ͢Δͱ͖ڞมྔγϑτ͸ॏཁ౓ॏΈ෇ ͖Λ༻͍Δ͜ͱͰղܾ͢Δ͜ͱ͕஌ΒΕ͍ͯΔ {(xi , yi )}n i=0 {x′}m i=0 x′ y fθ (x) loss(y, fθ ) minθ n ∑ i=0 w(xi )loss(yi , fθ (xi ))) w(xi ) = p′(xi ) p(xi )
  10. ڞมྔγϑτԼͷ༧ଌϞσϧ • ূ໌ Ep′[loss(y, fθ (x))] = ∫ ∫ loss(y,

    fθ (x))p′(x, y)dxdy = ∫ ∫ loss(y, fθ (x))p′(x)p′(y|x)dxdy = ∫ ∫ loss(y, fθ (x))p′(x)p′(y|x) p(x) p(x) dxdy = ∫ ∫ loss(y, fθ (x))p(x)p(y|x) p′(x) p(x) dxdy = ∫ ∫ loss(y, fθ (x))p(x, y)w(x)dxdy ≈ n ∑ i=0 loss(y, fθ (x))w(x)
  11. Interactive Learning Context: x Policy: π(x) Action: a = π(x)

    Reward: δ(x, a) System a User $POUFYU "DUJPO 3FXBSE 5JNF 6TFS9 " /P 5JNF 6TFS: # /P 5JNF 6TFS9 $ :FT 5JNF 6TFS; # /P 5JNF 6TFS: $ /P Logging ᶃ ᶄ ᶅ ᶆ x ∼ P(x)
  12. Interactive Learning 3FDPNNFOEBUJPO $POUFYUVBM CBOEJU 3FJOGPSDFNFOU -FBSOJOH $POUFYU 6TFSBOE*UFN *OGPSNBUJPO

    $POUFYU 4UBUF "DUJPO *UFN *% "SN "DUJPO 3FXBSE $MJDL 1VSDIBTF 3FXBSE 3FXBSE (ৄ͘͠͸੪౻ͷൃදͰ)
  13. Causal Inference • ࣮ࡍʹ؍ଌ͢Δͷ͸ͲͪΒ͔Ұํ͚ͩͰ͋Δ ☓ ױऀ: x Treatment: t පؾ͕࣏Δ͔Ͳ͏͔:

    y ҼՌਪ࿦ͷࠜຊ໰୊ ൓ࣄ࣮ (ৄ͘͠͸҆ҪͷൃදͰ) ༀΛ౤༩͍ͯ͠ͳ͍৔߹ ༀΛ౤༩ͨ͠৔߹
  14. Workshops • KDD • Causal Discovery, 2018/2019 • Offline and

    Online Evaluation of Interactive Systems, 2019 • NIPS • From ‘What if?’ To ‘What next?’, 2017 • Causal Learning, 2018 • RecSys • REVEAL, 2018/2019 • ICML • FAIM’18 Workshop(CausalML)
  15. Summary • Counterfactual Machine Learningͷ֓ཁ • ൓ࣄ࣮͕ੜ͡ΔσʔλΛ༻͍ͨػցֶशͰ͋Δ • Interactive LearningͱCausal

    Inference͕ڞมྔγϑτͷ෦ ෼໰୊Ͱ͋Δ͜ͱΛઆ໌ͨ͠ • ݚڀಈ޲ • ޿ࠂͷίϯϖʹΑͬͯσʔληοτ͕ެ։͞Ε͍ͯΔ • ֶ֤ձͷWorkshopΛ঺հ͢Δ
  16. References 1. Home Page of Thorsten Joachims
 http://www.cs.cornell.edu/people/tj/
 2. Counterfactual

    Reasoning and Learning Systems: The Example of Computational Advertising, Leon Bottou, et al…, JMLR 2013
 https://www.microsoft.com/en-us/research/wp-content/uploads/2013/11/ bottou13a.pdf
 3. ඇఆৗ؀ڥԼͰͷֶशɿڞมྔγϑτదԠɼ ΫϥεόϥϯεมԽదԠɼมԽݕ஌
 http://www.ms.k.u-tokyo.ac.jp/2014/NonstationarityReview-jp.pdf
 4. Offline Evaluation and Optimization for Interactive Systems
 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ tutorial.pdf Πϥετ by ͔Θ͍͍ϑϦʔૉࡐू ͍Β͢ͱ΍