Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Event streaming fundamentals with Apache Kafka
Search
Keith Resar
February 24, 2022
Technology
1
470
Event streaming fundamentals with Apache Kafka
Keith Resar
February 24, 2022
Tweet
Share
More Decks by Keith Resar
See All by Keith Resar
Real-Time Data Transformation by Example
keithresar
0
55
Exactly-Once Semantics and Transactions in Kafka
keithresar
0
120
Implementing Strangler pattern for microservices migrations
keithresar
0
360
Stream processing with ksqlDB and Apache Kafka
keithresar
1
400
How Nagios is leveraging Ansible Network Automation
keithresar
1
80
Automating Satellite Installation and Configuration With the Ansible Foreman Modules
keithresar
1
680
Writing your first Ansible operator for OpenShift
keithresar
1
210
Intro to CI/CD in GitLab and Anatomy of a Pipeline
keithresar
2
370
Ansible Ecosystem Future Directions
keithresar
0
160
Other Decks in Technology
See All in Technology
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.5k
人工衛星のファームウェアをRustで書く理由
koba789
14
7.6k
落ちる 落ちるよ サーバーは落ちる
suehiromasatoshi
0
150
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
100
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
540
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
230
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
11
4.7k
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
テストを軸にした生き残り術
kworkdev
PRO
0
200
品質視点から考える組織デザイン/Organizational Design from Quality
mii3king
0
200
Featured
See All Featured
Designing for Performance
lara
610
69k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Unsuck your backbone
ammeep
671
58k
Into the Great Unknown - MozCon
thekraken
40
2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
It's Worth the Effort
3n
187
28k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Scaling GitHub
holman
463
140k
Transcript
Event Streaming Fundamentals with Apache Kafka Keith Resar Sr. Kafka
Developer @KeithResar
Data-Driven Operations
Data-Driven Operations
Data-Driven Operations
None
@KeithResar
@KeithResar
The Rise of Event Streaming 2010 Apache Kafka created at
LinkedIn 2022 Most fortune 100 companies trust and use Kafka
A company is built on _DATA FLOWS_ but all we
have are _DATA STORES_
Example Application Architecture Serving Layer (Microservices, Elastic, etc.) Java Apps
with Kafka Streams or ksqlDB Continuous Computation High-Throughput Event Streaming Platform API-Based Clustering @KeithResar
Apache Kafka is an Event Streaming Platform 1. Storage 2.
Pub / Sub 3. Processing @KeithResar
Storage 12 @KeithResar
Core Abstractions @KeithResar • DB → table • Hadoop →
file • Kafka - ?
LOG
Immutable Event Log New Messages are added at the end
of the log Old @KeithResar
Messages are KV Bytes key: byte[] value: byte[] Headers =>
[Header] @KeithResar
Messages Inside Topics Clicks Orders Customers Topics are similar to
database tables @KeithResar
Topics divide into Partitions Messages are guaranteed to be strictly
ordered within a partition @KeithResar P 0 Clicks P 1 P 2
None
Pub / Sub 20 @KeithResar
Producing Data New Messages are added at the end of
the log Old @KeithResar
Consuming Data New Consume via sequential data access starting from
a specific offset. Old @KeithResar Read to offset & scan
Distinct Consumer Positions New Old @KeithResar Sally offset 12 Fred
offset 3 Rick offset 9
None
Messages are KV Bytes key: byte[] value: byte[] Headers =>
[Header] @KeithResar
Producing to Kafka - No Key @KeithResar P 0 P
1 P 2 P 3 Messages will be produced in a round robin fashion
Producing to Kafka - No Key @KeithResar P 0 P
1 P 2 P 3 Messages will be produced in a round robin fashion
Producing to Kafka - With Key @KeithResar P 0 P
1 P 2 P 3 hash(key) % numPartitions = N
Producing to Kafka - With Key @KeithResar P 0 P
1 P 2 P 3 hash(key) % numPartitions = N
Consumer from Kafka - Single @KeithResar P 0 P 1
P 2 P 3 Single consumer reads from all partitions
Consumer from Kafka - Multiple @KeithResar P 0 P 1
P 2 P 3 Consumers can be split into multiple groups each of which operate in isolation
CONSUMER GROUP COORDINATOR CONSUMERS CONSUMER GROUP
Consumer from Kafka - Multiple @KeithResar P 0 P 1
P 2 P 3 Consumers can be split into multiple groups each of which operate in isolation
Consumer from Kafka - Multiple @KeithResar P 0 P 1
P 2 P 3 Consumers can be split into multiple groups each of which operate in isolation
Grouped Consumers @KeithResar P 0 P 1 P 2 P
3 Consumers can be split into multiple groups each of which operate in isolation
Grouped Consumers @KeithResar P 0 P 1 P 2 P
3 Consumers can be split into multiple groups each of which operate in isolation X
None
Linearly Scalable Architecture @KeithResar Producers • Many producers machines •
Many consumer machines • Many Broker machines Consumers Single topic, No Bottleneck!
Replicate for Fault Tolerance @KeithResar Broker A Broker B Message
✓ Leader Replicate
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Replication Provides Resiliency @KeithResar Producers Consumers Replica followers become leaders
on machine failure X X X X X
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader Partition 2 Partition 1 Partition 3
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Follower Leader Partition 2 Partition 1 Partition 3
None
The log is a type of durable messaging system @KeithResar
Similar to a traditional messaging system (ActiveMQ, Rabbit, etc.) but with: • Far better scalability • Built-in fault tolerance/HA • Storage
None
Origins in Stream Processing Serving Layer (Microservices, Elastic, etc.) Java
Apps with Kafka Streams or ksqlDB Continuous Computation High-Throughput Event Streaming Platform API-Based Clustering
Processing 51 @KeithResar
Streaming is the toolset for working with events as they
move! @KeithResar
What is stream processing? @KeithResar auth attempts possible fraud
What is stream processing? @KeithResar User Population Coding Sophistication Core
developers who use Java/Scala Core developers who don’t use Java/Scala Data engineers, architects, DevOps/SRE BI analysts streams
Standing on the Shoulders of Streaming Giants Producer, Consumer APIs
Kafka Streams ksqlDB Ease of use Flexibility ksqlDB UDFs Powered by Powered by
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
None
Wrap Up 64 @KeithResar
developer.confluent.io Learn Kafka. Start building with Apache Kafka at Confluent
Developer.
Free eBooks Designing Event-Driven Systems Ben Stopford Kafka: The Definitive
Guide Neha Narkhede, Gwen Shapira, Todd Palino Making Sense of Stream Processing Martin Kleppmann I ❤ Logs Jay Kreps http://cnfl.io/book-bundle
None
Thank You @KeithResar Kafka Developer confluent.io