Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Event streaming fundamentals with Apache Kafka
Search
Keith Resar
February 24, 2022
Technology
1
440
Event streaming fundamentals with Apache Kafka
Keith Resar
February 24, 2022
Tweet
Share
More Decks by Keith Resar
See All by Keith Resar
Real-Time Data Transformation by Example
keithresar
0
48
Exactly-Once Semantics and Transactions in Kafka
keithresar
0
110
Implementing Strangler pattern for microservices migrations
keithresar
0
340
Stream processing with ksqlDB and Apache Kafka
keithresar
1
370
How Nagios is leveraging Ansible Network Automation
keithresar
1
68
Automating Satellite Installation and Configuration With the Ansible Foreman Modules
keithresar
1
640
Writing your first Ansible operator for OpenShift
keithresar
1
190
Intro to CI/CD in GitLab and Anatomy of a Pipeline
keithresar
2
340
Ansible Ecosystem Future Directions
keithresar
0
150
Other Decks in Technology
See All in Technology
技術的負債を「戦略的投資」にするためのPdMとエンジニアの連携と実践
satomino
4
860
変化に強いテーブル設計の勘所 / Table design that is resistant to changes
soudai
27
7.8k
WindowsでGenesisに挑戦した話
natsutan
0
130
VueUseから学ぶ実践TypeScript #TSKaigi #TSKaigi2025
bengo4com
3
370
VPC Reachability AnalyzerAnalyzer~実務での使いどころ
masakiokuda
1
140
KubeCon + CloudNativeCon Europe 2025 Recap: The GPUs on the Bus Go 'Round and 'Round / Kubernetes Meetup Tokyo #70
pfn
PRO
0
180
Kent Beckの思想と学びの道筋 / 20250517 Ryutaro Yoshiba & Hiromitsu Akiba
shift_evolve
1
250
転職したらMCPサーバーだった件
nwiizo
14
10k
やめシフ大集合!!~SHIFT卒業生座談会~ / 20250517 Hiroko Tamagawa & Ayako Ueno & Ryo Asou &Kei Ishimaru
shift_evolve
0
210
Microsoft Fabric のライセンスについて
ryomaru0825
2
3.5k
スプリントゴールで価値を駆動しよう
takufujii
3
1.5k
MagicPod MCPサーバー開発の裏側とAIエージェント活用の展望
magicpod
0
330
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
A Tale of Four Properties
chriscoyier
159
23k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
We Have a Design System, Now What?
morganepeng
52
7.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Being A Developer After 40
akosma
91
590k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Facilitating Awesome Meetings
lara
54
6.4k
Producing Creativity
orderedlist
PRO
344
40k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
122
52k
Transcript
Event Streaming Fundamentals with Apache Kafka Keith Resar Sr. Kafka
Developer @KeithResar
Data-Driven Operations
Data-Driven Operations
Data-Driven Operations
None
@KeithResar
@KeithResar
The Rise of Event Streaming 2010 Apache Kafka created at
LinkedIn 2022 Most fortune 100 companies trust and use Kafka
A company is built on _DATA FLOWS_ but all we
have are _DATA STORES_
Example Application Architecture Serving Layer (Microservices, Elastic, etc.) Java Apps
with Kafka Streams or ksqlDB Continuous Computation High-Throughput Event Streaming Platform API-Based Clustering @KeithResar
Apache Kafka is an Event Streaming Platform 1. Storage 2.
Pub / Sub 3. Processing @KeithResar
Storage 12 @KeithResar
Core Abstractions @KeithResar • DB → table • Hadoop →
file • Kafka - ?
LOG
Immutable Event Log New Messages are added at the end
of the log Old @KeithResar
Messages are KV Bytes key: byte[] value: byte[] Headers =>
[Header] @KeithResar
Messages Inside Topics Clicks Orders Customers Topics are similar to
database tables @KeithResar
Topics divide into Partitions Messages are guaranteed to be strictly
ordered within a partition @KeithResar P 0 Clicks P 1 P 2
None
Pub / Sub 20 @KeithResar
Producing Data New Messages are added at the end of
the log Old @KeithResar
Consuming Data New Consume via sequential data access starting from
a specific offset. Old @KeithResar Read to offset & scan
Distinct Consumer Positions New Old @KeithResar Sally offset 12 Fred
offset 3 Rick offset 9
None
Messages are KV Bytes key: byte[] value: byte[] Headers =>
[Header] @KeithResar
Producing to Kafka - No Key @KeithResar P 0 P
1 P 2 P 3 Messages will be produced in a round robin fashion
Producing to Kafka - No Key @KeithResar P 0 P
1 P 2 P 3 Messages will be produced in a round robin fashion
Producing to Kafka - With Key @KeithResar P 0 P
1 P 2 P 3 hash(key) % numPartitions = N
Producing to Kafka - With Key @KeithResar P 0 P
1 P 2 P 3 hash(key) % numPartitions = N
Consumer from Kafka - Single @KeithResar P 0 P 1
P 2 P 3 Single consumer reads from all partitions
Consumer from Kafka - Multiple @KeithResar P 0 P 1
P 2 P 3 Consumers can be split into multiple groups each of which operate in isolation
CONSUMER GROUP COORDINATOR CONSUMERS CONSUMER GROUP
Consumer from Kafka - Multiple @KeithResar P 0 P 1
P 2 P 3 Consumers can be split into multiple groups each of which operate in isolation
Consumer from Kafka - Multiple @KeithResar P 0 P 1
P 2 P 3 Consumers can be split into multiple groups each of which operate in isolation
Grouped Consumers @KeithResar P 0 P 1 P 2 P
3 Consumers can be split into multiple groups each of which operate in isolation
Grouped Consumers @KeithResar P 0 P 1 P 2 P
3 Consumers can be split into multiple groups each of which operate in isolation X
None
Linearly Scalable Architecture @KeithResar Producers • Many producers machines •
Many consumer machines • Many Broker machines Consumers Single topic, No Bottleneck!
Replicate for Fault Tolerance @KeithResar Broker A Broker B Message
✓ Leader Replicate
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Replication Provides Resiliency @KeithResar Producers Consumers Replica followers become leaders
on machine failure X X X X X
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Partition 1 Partition 2 Partition 3 Follower Leader Partition 2 Partition 1 Partition 3
Partition Leadership / Replication @KeithResar Broker 1 Broker 2 Broker
3 Broker 4 P 0 P 1 P 2 P 3 Partition 0 Partition 2 Partition 3 Partition 0 Partition 1 Partition 3 Partition 0 Partition 1 Partition 2 Follower Leader Partition 2 Partition 1 Partition 3
None
The log is a type of durable messaging system @KeithResar
Similar to a traditional messaging system (ActiveMQ, Rabbit, etc.) but with: • Far better scalability • Built-in fault tolerance/HA • Storage
None
Origins in Stream Processing Serving Layer (Microservices, Elastic, etc.) Java
Apps with Kafka Streams or ksqlDB Continuous Computation High-Throughput Event Streaming Platform API-Based Clustering
Processing 51 @KeithResar
Streaming is the toolset for working with events as they
move! @KeithResar
What is stream processing? @KeithResar auth attempts possible fraud
What is stream processing? @KeithResar User Population Coding Sophistication Core
developers who use Java/Scala Core developers who don’t use Java/Scala Data engineers, architects, DevOps/SRE BI analysts streams
Standing on the Shoulders of Streaming Giants Producer, Consumer APIs
Kafka Streams ksqlDB Ease of use Flexibility ksqlDB UDFs Powered by Powered by
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
What is stream processing? @KeithResar CREATE STREAM possible_fraud AS SELECT
card_number, count(*) FROM authorization_attempts WINDOW TUMBLING (SIZE 5 MINUTE) GROUP BY card_number HAVING count(*) > 3;
None
Wrap Up 64 @KeithResar
developer.confluent.io Learn Kafka. Start building with Apache Kafka at Confluent
Developer.
Free eBooks Designing Event-Driven Systems Ben Stopford Kafka: The Definitive
Guide Neha Narkhede, Gwen Shapira, Todd Palino Making Sense of Stream Processing Martin Kleppmann I ❤ Logs Jay Kreps http://cnfl.io/book-bundle
None
Thank You @KeithResar Kafka Developer confluent.io