Upgrade to Pro — share decks privately, control downloads, hide ads and more …

同位体置換による核磁気共鳴化学シフトの理論的研究

kimikazu
March 04, 2010

 同位体置換による核磁気共鳴化学シフトの理論的研究

kimikazu

March 04, 2010
Tweet

More Decks by kimikazu

Other Decks in Science

Transcript

  1. 同位体置換による 核磁気共鳴化学シフトの理論的研究 Theoretical Study of Nuclear Magnetic Resonance Chemical Shift

    Induced by Isotope Effect ◦杉森公一, 川辺弘之 Kimikazu SUGIMORI, Hiroyuki KAWABE 金城大学社会福祉学部 3/13/2022 1 日本化学会第90回春季年会 21A 口頭B講演
  2. Isotope effect in chemistry • Kinetic Isotope Effect (KIE) •

    Geometrical Isotope Effect (GIE) • H/D isotope effect o Intra-, inter-hydrogen bonding o Nuclear Magnetic Resonance (NMR) o Additivity, primary/secondary isotope shift 3/13/2022 日本化学会第90回春季年会 1H9-28 2 Geometrical change  Molecular properties
  3. Nuclear magnetic shielding in H/D isotope effect • Nuclear shielding

    at equilibrium distance • At finite temperature  zero-point vibration, nuclear mass-dependency 3/13/2022 日本化学会第90回春季年会 1H9-28 3 X H X D = X H X D ≠ e- e- deshielding shielding Re Re <R> <R> >
  4. Nuclear mass-dependent theory & calculation(1) • Path-integral quantum Monte Carlo

    (PIMC) o M.C. Böhm et al., Chem. Phys. Lett. 322, 117 (2000). o J. Schulte et al., Mol. Phys. 99, 1155-1158 (2001). • Nuclear/Molecular Orbital method o S. Webb et al., J. Chem. Phys. 117,4106-4118 (2002). o H. Nakai, Int. J. Quantum Chem. 86, 511-517 (2002). o M. Tachikawa, Chem. Phys. Lett. 360, 494-500 (2002). For NMR property o Y. Kita, et al., J. Mol. Struct. (THEOCHEM) 912, 2-4 (2009). 3/13/2022 日本化学会第90回春季年会 1H9-28 4
  5. Nuclear mass-dependent theory & calculation(2) • Empirical model o T.

    W. Marshall, Mol. Phys. 3, 61-63 (1961). o A. D. Buchkingham, J. Chem. Phys. 36, 3096 (1962). • VSCF, anharmonic vibrational correction o P.-O. Åstrand et al., J. Chem. Phys. 112, 2655-2667 (2000). • Based on PES o A. C. de Dios et al., Annu. Rep. NMR Spectrosc. 29, 1-69 (1994). o R. D. Wigglesworth et al., J. Chem. Phys. 112, 736-746 (2000). 3/13/2022 日本化学会第90回春季年会 1H9-28 5
  6. Theory: BO & PES 3/13/2022 日本化学会第90回春季年会 21A 口頭 B講演 7

        R r R R r ; ) ( ; elec n n n U H        R R R nm nm nm n E U T     )) ( ( N     R R R R vib vib vib )) ( ) ( (   E U T   Rotation and transition-free case   R r R R r ; ) ( ) , ( n     Under Born-Oppenheimer approximation, nuclear wavefunction is depended on adiabatic potential U.
  7. Theory: Morse oscillator • Morse potential as adiabatic potential 3/13/2022

    日本化学会第90回春季年会 1H9-28 8      2 M 1 e R R e e D R V      2 2 2 2 2 1 2 2            v D D E e e v       • Energy level & wavefunction in analytical form ) ( ) ( ) ( 2 2 z L z e z b v b z v    3 parameters Fully analytical solution with Laguerre polynomial
  8. Theory: Thermal average • Boltzmann’s distribution at finite temperature T.

    3/13/2022 日本化学会第90回春季年会 1H9-28 9        v v v u T k E v v v T k E T R n e R R e R u v B B / / ) ( ) (              v v v u T k E v v v T k E T R n e R R e u v      B B / / ) ( ) ( n = 0 at 0 K
  9. Procedure 1. Potential energy surface(PES) / Magnetic shielding surface(MSS) by

    MO/DF method 2. Determining Morse Parameters , De , Re 3. Solving Morse wavefunctions and averaged Reff = 4. Thermal average at finite temperature at T 5. Magnetic shielding constant at RT eff 6. Primary isotope shift: 1D = XD - XH 3/13/2022 日本化学会第90回春季年会 1H9-28 10 ) ( ) ( R R R v v v   
  10. Computational details • PES o UHF / aug-cc-pVTZ Gaussian 03

    Rev.E01 o UMP2 / aug-cc-pVTZ Gaussian 03 Rev.E01 o UCCSD / aug-cc-pVTZ CFour ver.1.2 (beta/rc) o UB3LYP / aug-cc-pVTZ Gaussian 03 Rev.E01 o UPBE1PBE / aug-cc-pVTZ Gaussian 03 Rev.E01 • Morse wavefunction o Analytical function solved in Discrete Variable Representation (DVR) of 0.0001 a.u. (0.1 mBohr) grid. • Nuclear magnetic shielding constant o Gauge-Independent Atomic Orbital (GIAO) method 3/13/2022 日本化学会第90回春季年会 1H9-28 11
  11. Target molecules • Homo nucleic diatomic molecule: • Hetero nucleic

    diatomic molecule: 3/13/2022 日本化学会第90回春季年会 1H9-28 12 H H(D) H(D) Cl Na H(D) 1H-NMR 1H-NMR, 1H-NMR, 35Cl-NMR 23Na-NMR
  12. PES & MSS (1H-NMR for H2 ) Hydrogen molecule 3/13/2022

    日本化学会第90回春季年会 21A 口頭 B講演 13 PES UHF UMP2 UB3LYP UCCSD MSS deshielding
  13. PES & MSS (1H-NMR for HCl) Hydrogen chloride molecule 3/13/2022

    日本化学会第90回春季年会 21A 口頭 B講演 14 UHF UMP2 UB3LYP UCCSD UPBE1PBE PES MSS deshielding 1S 0.139 2S 0.380 3S 0.227 1S 0.250 2S 0.435 3S 0.041
  14. PES & MSS (35Cl-NMR for HCl) Hydrogen chloride molecule 3/13/2022

    日本化学会第90回春季年会 21A 口頭 B講演 15 PES MSS deshielding 2S 1.873 3S 1.170 4S 0.257 5S 0.678 2S 1.868 3S 1.134 4S 0.254 5S 0.672
  15. PES & MSS (1H-NMR for NaH) Sodium hydride molecule 3/13/2022

    日本化学会第90回春季年会 21A 口頭 B講演 16 PES MSS UHF UMP2 UB3LYP UCCSD UPBE1PBE deshielding
  16. PES & MSS (23Na-NMR for NaH) Sodium hydride molecule 3/13/2022

    日本化学会第90回春季年会 21A 口頭 B講演 17 PES MSS shielding
  17. Thermal averaged <R> vs. Equilibrium Re by using B3LYP parameterization

    3/13/2022 日本化学会第90回春季年会 1H9-28 18
  18. Thermal averaged T(<R>) and Equilibrium (Re ) by using GIAO/B3LYP

    and CCSD method 3/13/2022 日本化学会第90回春季年会 1H9-28 19 Exp. 0.038 GIAO/B3LYP GIAO/CCSD
  19. Summary • PES and MSS o Shapes of PES are

    not quite different without HF/aug-cc-pVTZ results which shows underestimated dissociation energy.  MP2 and hybrid DFT are effective for PES. o MSS behaviors represents the feature of shielding around the equilibrium distance. Deshielding or shielding characters are depended on the dissociation state. • GIE and Isotope shift by Morse wavefunction o By using Morse oscillator, isotope effect of H/D are obtained with low computational cost and effective. o B3LYP and CCSD results of shielding constant are quite close within the range of ppm~ppb. 3/13/2022 日本化学会第90回春季年会 1H9-28 20
  20. Concluding remarks • Application: o Polyatomic molecule o Primary and

    secondary isotope shift with respect to 13C chemical shift. • Another degree of freedom o Bending vibration, torsional vibration, ...  Extended Morse potentials. o Rotational mode  Dunham potential. 3/13/2022 日本化学会第90回春季年会 1H9-28 21
  21. Acknowledgement • Author thanks o Dr. Hideto SHIMAHARA (JAIST) o

    Dr. Taku MIZUKAMI (JAIST) o Prof. Hidemi NAGAO (Kanazawa Univ.) o Prof. Kiyoshi NISHIKAWA (Kanazawa Univ.) • This work is supported by JSPS KAKENHI, Grant-in-Aid for Encouragement of Scientists 科学研究費補助金(奨励研究) (21915007) 「同位体置換による核磁気共鳴化学シフトの変化に関する 理論的研究」. 3/13/2022 日本化学会第90回春季年会 1H9-28 22
  22. Tables(1) 3/13/2022 日本化学会第90回春季年会 1H9-28 23 Table 1: Morse parameters determined

    by using B3LYP/aug-cc-pVTZ. Table 2: Equilibrium internuclear distance Re , average internuclear distance <RXH > of hydrogen-isotope, <RXD > of deuterated isotope, and their ratio to Re , in ångström.
  23. Tables(2) 3/13/2022 日本化学会第90回春季年会 1H9-28 24 Table 4: Calculated NMR-GIAO shielding

    tensor σ (isotropic value) in ppm of the equilibrium internuclear distance Re , average internuclear distance <RXH >T of hydrogen-isotope, <RXD >T of deuterated isotope, and their ratio to Re . Table 3: Isotope shift of internuclear distance <R> and <R>T.