Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20分で大体わかる! AWS Glue Data Qualityによる データ品質検査
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Niino
January 31, 2024
Technology
0
31k
20分で大体わかる! AWS Glue Data Qualityによる データ品質検査
Niino
January 31, 2024
Tweet
Share
More Decks by Niino
See All by Niino
祝!Iceberg祭開幕!re:Invent 2024データレイク関連アップデート10分総ざらい
kniino
4
890
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
640
Iceberg で Amazon Athena をデータウェアハウスぽく使おう
kniino
0
7.4k
〜小さく始めて大きく育てる〜データ分析基盤の開発から活用まで
kniino
1
3.3k
ダッシュボードもコード管理!Amazon QuickSightで考えるBIOps
kniino
0
3k
Other Decks in Technology
See All in Technology
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
250
Greatest Disaster Hits in Web Performance
guaca
0
310
プレビュー版のDevOpsエージェントを現段階で触ってみた
ad_motsu
1
130
AI駆動開発を事業のコアに置く
tasukuonizawa
1
470
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
Cosmos World Foundation Model Platform for Physical AI
takmin
0
1k
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
5
250
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
600
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
640
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
180
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
390
Featured
See All Featured
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
150
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
140
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
120
Discover your Explorer Soul
emna__ayadi
2
1.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
160
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
Building Applications with DynamoDB
mza
96
6.9k
Transcript
20分で大体わかる! AWS Glue Data Qualityによる データ品質検査 クラスメソッド株式会社 niino
⾃⼰紹介 niino • データアナリティクス事業本部 インテグレーション部 コンサルティングチーム ◦ ソリューションアーキテクト ◦ 2023
Japan AWS Top Engineer(Analytics) • データ分析基盤に関するコンサルティング • 最近の高い買い物:ベース • 奈良県出身 大阪オフィス所属 この辺の出身
本題 データ分析においてデータの品質は重要! データパイプラインが エラーになった… 分析結果が 間違ってる…
とはいえ、データ品質検査にもいろんな課題が データが大量だし 形式も様々で 品質チェックの 実行も一苦労 品質検査にはどの ツールを 使うべき? データの変動を 把握したい
AWS Glueの新たな機能、 AWS Glue Data Quality
AWS Glueとは AWSが提供するサーバーレスなデータ統合サービス • PythonとApache Sparkを使った大量データの処理(Glue ETL Job) • データ資産のカタログ化(Glue
Data Catalog) • GUIでのジョブ作成(Glue Visual Editor/Glue Data Brew) などの様々な機能が提供 Crawler Data Catalog S3 Bucket Amazon Athena Amazon QuickSight Amazon Redshift ETL Job データソース
AWS Glueとは AWSが提供するサーバーレスなデータ統合サービス • PythonとApache Sparkを使った大量データの処理(Glue ETL Job) • データ資産のカタログ化(Glue
Data Catalog) • GUIでのジョブ作成(Glue Visual Editor/Glue Data Brew) などの様々な機能が提供 Crawler Data Catalog S3 Bucket Amazon Athena Amazon QuickSight Amazon Redshift ETL Job データソース 2023年6月、データ品質検査を担う Glue Data Qualityが一般提供開始
AWS Glue Data Qualityとは • ユーザーが定義したルール に従って、 データの品質検査を実施で きる機能 •
AWSが開発したOSSである Deequを利用 • ルールの定義にはDQDL (Data Quality Definition Language)を 利用
Data Qualityの基本的な使い方 ①ルールを定義 ルールタイプを 選択 ルールを定義 自動でルール をリコメンド
Data Qualityの基本的な使い方 ②実行
Data Qualityで利用可能なルール 2024/1現在、27種類 AggregateMatch ColumnCorrelation ColumnCount ColumnDataType ColumnExists ColumnLength ColumnNamesMatchPattern
ColumnValues Completeness CustomSql DataFreshness DatasetMatch DetectAnomalies DistinctValuesCount Entropy IsComplete IsPrimaryKey IsUnique Mean ReferentialIntegrity RowCount RowCountMatch SchemaMatch StandardDeviation Sum UniqueValueRatio Uniqueness
Data Qualityの便利なところ • DQDLを使って簡単にデータ品質検査のルールを定義可能 • CloudWatchやSNSを組み合わせることで通知可能 • 既存データを自動で分析して最適なルールを レコメンド •
Glue Job同様、ワーカーを増やしてスケールアップが 可能 • 静的なルールに合致しないデータを検出するだけでなく、 意図しない変化や異常を自動的に検出可能(プレビュー 機能)
Data Qualityの利用パターン Glue Data Catalog • Glue Data Catalogに登録されたテー ブルに対してデータ品質検査ルールを
定義して実行 • 取り込み後データのチェックに便利 • Glue ETL Jobを使っておらず、 Athenaを利用している場合でも使える Glue ETL Job • Glue ETL Jobの中に組み込む形でデー タ品質検査ルールを定義 • 取り込み前のデータのチェックに便利 • すでにGlue ETL Jobを使っている 場合、既存の処理に組み込める • GlueコネクタがサポートするAWS以外 のデータソースの品質検査も可能
実際の操作はこんな感じ
None
ユースケースいろいろ
ユースケースその1 テーブルへ投入する前の データファイルの品質を チェック • Glue ETL Jobの中で Data Qualityを利用
• データの異常を検知した ら通知 • ルールに沿っていれば データレイクへ投入
ユースケースその3 データの変化を把握する • 2023年11月に発表されたプレビュー機能 • 過去のデータと比較して変化を検知 • 異常を検知するだけでなく、データの傾向の変化を把握できる
ユースケースその3 データの変化を把握する • 2023年11月に発表されたプレビュー機能 • 過去のデータと比較して変化を検知 • 異常を検知するだけでなく、データの傾向の変化を把握できる
まとめ
まとめ • AWS Glue Data Qualityを使って、サーバーレスで AWSマネージドという取り組みやすい環境で データ品質検査ができる • 他AWSサービスと組み合わせて異常検知の際の通知
も可能 • データの変化の傾向把握にも使える
None