Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python入門者の集い #8 ゲスト講演② | Pythonを始めてからこれまでのこと
Search
komo_fr
May 13, 2019
Education
1
820
Python入門者の集い #8 ゲスト講演② | Pythonを始めてからこれまでのこと
▼ Python入門者の集い #8
https://python-nyumon.connpass.com/event/113338/
komo_fr
May 13, 2019
Tweet
Share
More Decks by komo_fr
See All by komo_fr
Bokeh & Dash Cytoscape 〜 Pythonによるインタラクティブなネットワーク可視化ライブラリの比較 / PyConJP2021
komofr
0
800
Dash Cytoscape 〜 Pythonによるインタラクティブ・ネットワーク可視化入門 / StartPython#67
komofr
0
1.7k
Dash Cytoscapeで始めるネットワーク可視化 / plotly dash book
komofr
0
660
(修正版) NumPy/pandas使いのためのテスト自動化入門 / PyConJP2020
komofr
32
12k
[Python Charity Talks in Japan] LT: ネットワーク解析とテキスト解析で見るPEP / pycharity
komofr
0
1.4k
PyPI翻訳プロジェクト速報 / PyLadies Tokyo LT
komofr
1
510
pandasのStyling機能で強化するJupyter実験レポート / PyConJP 2019
komofr
15
28k
EuroPython 2019 LT / Let's Explore PEPs with NetworkX!
komofr
2
1k
LT「データまえしょりすとのためのpytest入門」@みんなのPython勉強会#46
komofr
5
3.1k
Other Decks in Education
See All in Education
フィードバックの伝え方、受け身のココロ / The Way of Feedback: Words and the Receiving Heart
spring_aki
1
140
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
120
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019538FNR)
signer
PRO
1
2.1k
2025年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2025. 6. 26)
akiraasano
PRO
0
160
探査機自作ゼミ2025スライド
sksat
3
780
EVOLUCIÓN DE LAS NEUROCIENCIAS EN LOS CONTEXTOS ORGANIZACIONALES
jvpcubias
0
150
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
280
アントレプレナーシップ教育 ~ 自分で自分の幸せを決めるために ~
yoshizaki
0
170
【Discordアカウント作成ガイド】
ainischool
0
120
小学校女性教員向け プログラミング教育研修プログラム「SteP」の実践と課題
codeforeveryone
0
110
自分だけの、誰も想像できないキャリアの育て方 〜偶然から始めるキャリアプラン〜 / Career planning starting by luckly v2
vtryo
1
120
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
170
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Designing for Performance
lara
610
69k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
Transcript
Pythonೖऀͷू͍ #8
Who am I? @komo_fr (Tomoko Furuki) • ҩྍը૾ใγεςϜͷઃܭɾ࣮ɾධՁͳͲ ˠ άϧʔϓձࣾͷσʔλ׆༻ͷͨΊͷ
PoC࡞ɾػցֶशͳͲʢPython) → ϑϦʔ • Pythonബ͘͘4͘Β͍ • PyCon JP 2018, SciPy Japan 2019ͱ͔Ͱͨ͠
5/26 PyLadiesTokyo Meetup ઌੜͱͯ͠ࢀՃ ※ ࢀՃͰ͖ΔͷঁੑͷํͷΈͱͳΓ·͢. ྃ͝ঝ͍ͩ͘͞ https://pyladies-tokyo.connpass.com/event/129156/
Pythonʹग़ձ͔ͬͯΒ ͜Ε·Ͱ ࠓ͢͜ͱ
࣌Ḫͬͯ 2015ॳ಄… 2015 2016 2017 2018 2019
Pythonʹग़ձ͏લ (2015Ҏલ) • ҩྍը૾ใγεςϜͷઃܭɾ࣮ɾධՁͳͲ • ʮڠྗձࣾͷཧͰͳ͘ɺίʔυΛॻ͖͍ͨʯͱ͍ ͏رͷݩɺ1ʙ3ਓఔͷνʔϜʹ • C#, Objective-C,
Java, PowerShell, ৭ʑͬͨ
ྑ͔ͬͨ • ෳͷݴޠͷ࣮ܦݧΛಘΒΕͨ • ݴޠʹґଘ͠ͳ͍ࣝ • ൺֱ͢Δ͜ͱͰɺಛΛֶͿ • Objective-CΛͬͨ͜ͱͰ ʮͳΜͰ͜Μͳݴޠઃܭʹͨ͠Μͩʁʯͱ͍͏͜
ͱʹڵຯΛ࣋ͪग़͢
ෆຬͩͬͨ • ϲ݄͝ͱʹݴޠ͕มΘΔ • ͦͷݴޠͷࢥจԽɺਂ͍ͱ͜ΖʹͨͲΓண ͘લʹ࣍ʹ͍ͬͪΌ͏ • ʮ͏Θ͚ͩΛ͍ͬͯΔײ͕͢͡Δʯͱ͍͏ Γͳ͞ •
ϝΠϯݴޠ͕Objective-CͰෆ͕҆͋ͬͨ
ͤΊͯݴޠͻͱͭʹ ߜΓ͍ͨ ͋Ε͜Εͭ·Έ͙͍͢ΔͷͰͳ͘
͖͔͚ͬ ʢ2015ॳ಄ʣ
࣌ͷࢲർΕ͍ͯͨ
ՈࣄΛ͢Δݩؾ͕ͳ͍
ͰεϚϗήʔϜ͢Δ ʢ͓͔͍͠Ͷʣ
ͰεϚϗήʔϜ͢Δ ʢ͓͔͍͠Ͷʣ ը໘ΆͪΆͪ
ͰεϚϗήʔϜ͢Δ ʢ͓͔͍͠Ͷʣ ը໘ΆͪΆͪ ϙΠϯτ ՝ۚͰ Ψνϟ͕Ҿ͚Δʂ
ͰεϚϗήʔϜ͢Δ ʢ͓͔͍͠Ͷʣ ը໘ΆͪΆͪ ϙΠϯτ ՝ۚͰ Ψνϟ͕Ҿ͚Δʂ
෦શવย͔ͳ͍
None
՝ۚ͡Όͳͯ͘෦Λย͚ͨΒ ͝๙ඒͰ Ψνϟ͕Ҿ͚ͨΒ͍͍ͷʹ……
ΨνϟΛҾ͍ͨΒ ɹɹɹ͕͋ͨΕ ͍͍ͷʹ……
࡞Ζ͏
ໝ͢Δ • ఆظతʹΧϝϥͰ෦ΛࡱӨ • ը૾Λݩʹɺย͍͍ͯΔ or ͍ͳ͍Λఆ • ย͍͍ͯͨΒϙΠϯτ͕ஷ·Δʂ •
࿈cleanͩͱϘʔφεɺϨϕϧΞοϓ…… • Web্ͷը໘ͰϙΠϯτ֬ೝͰ͖Δ
• ఆظతʹΧϝϥͰ෦ΛࡱӨ • ը૾Λݩʹɺย͍͍ͯΔ or ͍ͳ͍Λఆ • ย͍͍ͯͨΒϙΠϯτ͕ஷ·Δʂ • ࿈cleanͩͱϘʔφεɺϨϕϧΞοϓ……
• Web্ͷը໘ͰϙΠϯτ֬ೝͰ͖Δ ໝ͢Δ
clean messy ແྉࣸਅૉࡐࣸਅ"$IUUQTXXXQIPUPBDDPN
clean messy •ઢ৭ͷछྨ͕গͳ͍ •ͪ͝Όͪ͝Όͯ͠ͳ͍ʢς Ϋενϟʣ •ݟ͍͑ͯΔচ໘ੵ͕͍ •….. • ઢ৭ͷछྨ͕ଟ͍ •
ͪ͝Όͪ͝Όͯ͠ΔʢςΫ ενϟʣ • ݟ͍͑ͯΔচ໘ੵ͕ڱ͍ • ….. ແྉࣸਅૉࡐࣸਅ"$IUUQTXXXQIPUPBDDPN
clean messy •ઢ৭ͷछྨ͕গͳ͍ •ͪ͝Όͪ͝Όͯ͠ͳ͍ʢς Ϋενϟʣ •ݟ͍͑ͯΔচ໘ੵ͕͍ •….. • ઢ৭ͷछྨ͕ଟ͍ •
ͪ͝Όͪ͝Όͯ͠ΔʢςΫ ενϟʣ • ݟ͍͑ͯΔচ໘ੵ͕ڱ͍ • ….. ແྉࣸਅૉࡐࣸਅ"$IUUQTXXXQIPUPBDDPN Ͱࠓͬͯ͏ ࣗͰಛྔͱ͔ ߟ͑ͳͯ͘ ͍͍ͷ͔ͳ……
• ී௨ͷهࣄͰʮσΟʔϓϥʔχϯάʯΛݟ͔͚Δ Α͏ʹͳΓ࢝Ίͨࠒ • ͰɺTensorflowChainerΪϦ·ͩग़ͯͳ ͔ͬͨ • Chainer: 2015/6 •
Tensorflow: 2015/11 2015ͷ͡Ί
•ը૾ॲཧ •ػցֶश •Raspberry pi ʢΧϝϥ༻ʣ Α͘Θ͔ΒΜͷͰ ΩʔϫʔυΛݩʹຊΛ୳͢
ը૾ॲཧ • PythonͰॻ͍ͯ͋ͬͨ • Numpyͱͷग़ձ͍ • ʮCΑΓָʹը૾ॲཧ ɹͰ͖ΔΜʂʯ • ʮOpenCV͑ΔΜʂʯ
IUUQTXXXPSFJMMZDPKQCPPLT
ػցֶश • PythonͰॻ͍ͯ͋ͬͨ • scikit-learnͱͷग़ձ͍ IUUQTXXXPSFJMMZDPKQ CPPLT
Raspberry PiʢΧϝϥ༻ʣ • ʮOSࡌͬͯͯ΄͍͔͠Β Arduinombed͡Όͳͯ͘ ϥζύΠͰ……ʯ • PythonͰॻ͍ͯ͋ͬͨ ࣌ୈ1൛ɺը૾ୈ4൛ IUUQTBN[OUP6GZVJC
ͨΒPythonʹग़͘Θ͢
ͨΒPythonʹग़͘Θ͢ ͳΜͰʔʁ
ઈົͳλΠϛϯά • ͘ઙ͘શ෦ೖΓͳ༰ • ίϛϡχςΟͷଘࡏΛΔ • PyDataͱ͍͏ݴ༿ΛΔ ࠓվగ൛͕ ग़͍ͯΔ
IUUQTBN[OUP%C5F/ IUUQTBN[OUPJV;/9N
Column: PyDataͷ͕Γ 1ZUIPOΤϯδχΞཆಡຊQ͔ΒҾ༻ RMATLABڧྗͰ͕͢ɺ൚༻ͷϓϩάϥϛϯάݴޠͰ ͋Γ·ͤΜɻҰํɺPythonɺ൚༻ϓϩάϥϛϯάݴޠͱ͠ ͯ๛ͳඪ४ϥΠϒϥϦαʔυύʔςΟύοέʔδ͕ఏ ڙ͞Ε͍ͯ·͢ɻPythonͳΒɺܭࢉػցֶशʹΑͬ ͯಘͨ݁ՌΛWebαʔϏεͱͯ͠ఏڙ͢Δͱ͜Ζ·ͰΛɺ ̍ͭͷϓϩάϥϛϯάݴޠͰߦ͑·͢ɻ
͓෦ɾԚ෦ఆɺ ҰͭͷݴޠͰָʹ࡞Εͦ͏……! • ఆظతʹΧϝϥͰ෦ΛࡱӨ • ը૾Λݩʹɺย͍͍ͯΔ or ͍ͳ͍Λఆ • ย͍͍ͯͨΒϙΠϯτ͕ஷ·Δʂ
• ࿈cleanͩͱϘʔφεɺϨϕϧΞοϓ…… • Web্ͰϙΠϯτ֬ೝͰ͖Δ
ͤΊͯݴޠͻͱͭʹ ߜΓ͍ͨ ͋Ε͜Εͭ·Έ͙͍͢ΔͷͰͳ͘
࣌झຯͰֶ΅͏ͱ͍ͯͨ͠ ݴޠͷީิ •Python •Go •Swift •Haskell
Pythonʹͨ͠ཧ༝ •ʮ಄ͷதͷΞΠσΞΛܗʹ͢Δʯͷʹ͍͍ͯͦ͏ •๛ͳOSSͷࢿ࢈ •ࢼߦࡨޡ͍͢͠εΫϦϓτݴޠ •PEPͳͲυΩϡϝϯτͷจԽ •ݴޠઃܭͷཧ༝͕υΩϡϝϯτԽ͞Ε͍ͯΔ •ʮҰͭͷݴޠΛਂ͘Γ͍ͨʯͱ͍͏ཉٻʹͬͨ͞
2015ޙ • ࣄͰ͏ػձ͕ͳ͍ & ҟಈͷόλόλ • IoTͷςʔϚͷࣾϋοΧιϯͰϥζύΠΛಈ͔͢ ͷʹPython (& OpenCV)
Λ͏ • पғ͔ΒʮͳΜͰPython???ʯͬͯԠͩͬͨ • ࣄ͕ऴΘ͔ͬͯΒҰਓͰؤுΔ ۀͰ͑ͳ͍ͷͰ ϓϥΠϕʔτͰগ͠ͰΔΑظ
2016 • AI / σʔλ׆༻ͷPoCΛ࡞Δ • Կܾ·͍ͬͯͳ͍ͷͰɺPythonΛબͨ • σʔλΛpandasͰཧ͢Δͱ͜Ζ͔Βελʔτ •
खΛಈ͔͢ػձ͕૿͑ͨ͜ͱͰɺͰ͖Δ͜ͱ૿͑Δ • ͕ɺࣾͩͱपΓʹ૬ஊͰ͖Δਓ͕͍ͳ͍ ۀͰ͍ग़ͨ͠ظ
Πϕϯτษڧձʹ ͋͑ͯߦ͍ͬͯͳ͔ͬͨ •࣌ͷ͓ؾ࣋ͪ •ʮిंͰҠಈ͢Δ͕࣌ؒମແ͍͔Βίʔυॻ࣌ؒ͘ ʹ͍͋ͯͨʯ •ʮ࠙ձͱ͔ߦͬͯԿΕ͍͍ͷ͔Θ͔Μͳ͍ɻ ͦͷ͘Β͍ͳΒίʔυॻ͖͍ͨʯ •ݱʹߦ͔ͣɺࢿྉಈըΛݟΔ •PyCon JPͱ͔ಛผʹେ͖͍Πϕϯτ͚ͩߦ͍ͬͯͨ
clean messy ແྉࣸਅૉࡐࣸਅ"$IUUQTXXXQIPUPBDDPN
Ԙ௮͚
ϥζύΠͰఆ؍ଌʁ •ʮఆ؍ଌ͍͔ͨ͠ΒϥζύΠʹΧϝϥ͚ͭͯʙʯ ˠ ηοτΞοϓͯ͠৭ʑ༡ΜͰ͍Δ͏ͪʹ໘ष͘ͳΔ ˠ Ԙ௮͚ •ʢผʹ࠷ॳMacͰ͑͑Ζ……ʣ
ࣗࣨͷը૾ΛूΊΔʁ •ʮػցֶश͔ͩΒը૾Λ͍ͬͺ͍ूΊΔͨΊʹఆظࡱӨ͠ ͯʙ……ʯ •ʮ͋ͬͰఆظࡱӨͩͱணସ͑தͷγʔϯࠞ͟Δ͔͠Ε ͳ͍͠ɺ෦શମͷը૾ͩͱൃදͱ͔Ͱ͍ʹ͍͘……ʯ ˠ ৭ʑߟ͍͑ͯΔ͏ͪʹ໘ष͘ͳΔ → Ԙ௮͚ •ʢผʹࣗͷ෦શମ͡Όͳͯ͑͑͘Ζ……ʣ
ը໘Ͳ͏͠Α͏ʁ • ʮDB࡞ͬͯσʔλಡΈࠐΜͰʙάϥϑදࣔͱ͔ΧϨ ϯμʔදࣔͱ͔Ͱ͖ͯʙεϚϗ͔ΒΞΫηεͰ͖ͯʙʯ ˠ (ུʣ → Ԙ௮͚ •
ʢผʹ࠷ॳTwitterSlackʹ௨͚ͩͰ͑͑ Ζ……ʣ
కΊΓͳ͍ͷʹ ڽͬͨΞΠσΞΛ͜Ͷͩ͢ͱ Ӭԕʹ಄ͷத͔Βग़ͯདྷͳ͍
Ԙ௮͚
2017લ • ҰਓͰؤுΔෆ҆ • िͣͬͱՈͰίʔυॻ͔͘ຊΛಡΜͰΔͷͰਫ਼ ਆ͕Ҿ͖͜Γ͕ͪ • ʮͲ͏ͤʹՈͰίʔυΛॻ͘ͳΒɺ֎Ͱίʔ υΛॻ͘ͷಉ͡Ͱʯ ίϛϡχςΟʹإΛग़࢝͠Ίͨظ
Output & Follow •PyCon JP 2017 Ͱհ͞ΕͨϥΠϒϥϦΛͬͯ 1िؒͰ1ݸΦϦδφϧͷԿ͔Λ࡞Δ x 3ຊ
•PythonstaʹΑΔiOSΞϓϦ •ScrapyʹΑΔεΫϨΠϐϯά •จষࣗಈੜ •3ຊ࡞ͬͯɺͦͷ͏ͪͻͱͭΛPyLadies TokyoͰLT
ྑ͔ͬͨ • ʮޱԼखͰࣗͷ͜ͱΛઆ໌͢Δͷ͕ۤखͰɺ ɹಈ͘ίʔυ͕͋Δͱձ͕͍͢͠ʯͱ͍͏ ɹೝࣝΛ࣋ͭ • ͍ظؒͰԿ͔Λ࡞Δʹ… ʮ࠷ݶ࡞ΕΔͷʯͷΓग़͠ํ͕ͳΜͱͳ͘Θ͔ Δ
2017ޙ - 2018લ • ಈػͷͻͱͭʮҰͭͷݴޠΛਂ͘Γ͍ͨʯ ωλΛͻͱͭʹߜΔظ
ྑ͔ͬͨ • ωλΛҰͭʹߜͬͨ͜ͱͰɺػձ͕૿͑ͨ • إΛ֮͑ͯΒ͑ͨ → ͍ΖΜͳਓ͔ΒɺΛ͔͚ͯΒ͑Δ ˠ PyConJpͰൃද͢Δ͖͔͚ͬ •
OSSʹprΛૹΔ • θϩ͔ΒԿ͔Λܧଓͯ͠֎ʹൃදͯ͠FbΛΒ͏ɺͱ͍ ͏ײ͕֮ͪΐͬͱΘ͔ͬͨ
͜ͷ࣌ظʹΒͳ͔ͬͨ͜ͱ • ϒϩάॻ͔ͳ͔ͬͨ • ࠓɺຊޠΑΓίʔυॻ͖͍ͨ ͦͷΘΓɺ͘͘ձͰίʔυΛॻ͍ͯՌൃද • ίϛϡχςΟͷӡӦɺߨࢣԕྀͨ͠ • ࠓɺ͕ࣗίʔυΛॻ͖͍ͨ
ͦͷΘΓɺLTͷίϯςϯπຒΊΔ(͕ࣗ࡞ͬͨ ͷʹ͍ͭͯ͢ ԿͰ͔ΜͰͰ͖ͳ͍
Ξτϓοτେࣄ͚ͩͲ શ෦Δͷେม ʢ͋ͳ͕ͨਓ͡Όͳ͍ݶΓʣ
ޠΓ
࣌ྲྀΕ 2019…… 2015 2016 2017 2018 2019
࠷ॳͷϓϩτ࡞ͬͨ OheyaObeya
ٸʹͲ͏ͨ͠ʁ • ϋοΧιϯ (FFS Hackathon 2018) ʹࢀՃʢకͷઃఆʣ • Կ͕ԿͰ࣮ࡍʹಈ͘ϒπΛ࡞Γ͍ͨ •
লΛ౿·͑ɺγϯϓϧʹߟ͑ͯ ·ͣʮҰ൪ָʹ࡞ΕΔͷʯΛ ࢦ͢ʢ࠷ॳڽΓ͗͢ͳ͍ʣ • ઃఆΛ෦શମͰͳ͘ ʮصͷ্ʯʹݶఆͨ͠
σϞಈըʢػೳͷҰ෦ʣ •https://www.youtube.com/watch?v=Pub1_Nes1tM&feature=youtu.be •KerasͰ࡞ͬͨɻৄࡉ-> IUUQTCJUMZ:,F)
·ͱΊ •͕ࣗཉ͍͠ͷΛ࡞ΔͨΊʹࢲPythonΛ࢝Ίͨ •࢝Ί͙ͯ͢ʹɺ͍͢͝Ξτϓοτ͕Ͱ͖ͨΘ͚Ͱ ͳ͔ͬͨ •ֶͼɺ୳ࡧͷ࣌ظͱूதͷ࣌ظ͕͋Δ •Ͳ͏͍͏ֶͼํ͕͍ͯΔ͔ɺࢼߦࡨޡ͠Α͏ •γϯϓϧʹߟ͑Α͏ •ͱʹ͔͘ίʔυΛॻ͜͏